
Agriculture Association of Textile Chemical and Critical Reviews Journal (2024) 87-95

Review	Article Open	Access

05 May 2024: Received
12 June 2024: Revised

09 July 2024: Accepted
26 August 2024: Available Online

www.aatcc.peerjournals.net

Arti�icial	 neural	 networks	 and	 adaptive	 neuro-fuzzy	 inference	 system	
networks'	application	in	crop	production

1 2 3 3 4Gagandeep	Kaur* ,	Rajan	Bhatt ,	Mandapelli	Sharath	Chandra* ,	Ch.	Pragathi	Kumari ,	Shipra	Yadav ,	
5

Pradeep	Kumar	Kanaujiya
1
Yadavindra College of Engineering, Talwandi Sabo, Bathinda, Punjab, India.

2PAU-Krishi Vigyan Kendra, Amritsar, Punjab, India. 
3AICRP on Integrated Farming System, Professor Jayashankar Telangana State Agricultural University,Rajendranagar, Telangana, India. 
4
Department of Agriculture, Integral institute of Agricultural Science and Technology, Integral University Lucknow, Uttar Pradesh, India. 

5
Department of Agronomy, School of Agriculture, ITM University, Gwalior, Madhya Pradesh, India. 

	ABSTRACT	
In	the	dynamic	realm	of	agriculture,	where	intricate	interactions	between	environmental	factors	and	human	interventions	dictate	
crop	outcomes,	the	pursuit	of	innovation	has	long	been	a	driving	force.	Within	this	context,	arti�icial	intelligence	(AI)	has	emerged	as	
a	catalyst	 for	precision	and	ef�iciency,	offering	transformative	potential	 in	crop	production.	Among	the	diverse	branches	of	AI,	
arti�icial	neural	networks	(ANNs)	and	their	adaptive	counterparts,	particularly	the	fuzzy	logic/fuzzy	inference	system	(FIS)	and	
adaptive	 neuro-fuzzy	 inference	 system	 (ANFIS)	 emerged	 as	 robust	 tools	 poised	 to	 revolutionize	 agriculture.	 Inspired	 by	 the	
complexities	of	 the	human	brain,	ANNs	represent	a	paradigm	shift	 in	understanding	and	optimizing	crop	production	systems,	
offering	remarkable	abilities	to	discern	patterns,	extract	insights,	and	adapt	to	changing	environmental	conditions.	This	chapter	
embarks	on	an	illuminating	journey	into	the	realm	of	arti�icial	and	adaptive	neural	networks,	delving	deep	into	their	applications	
and	 implications	 in	 crop	 production.	 Through	 a	 meticulous	 exploration	 of	 their	 architecture,	 functionality,	 and	 real-world	
applications,	the	transformative	potential	of	ANNs	in	optimizing	yields,	mitigating	risks,	and	fostering	resilience	in	agricultural	
ecosystems	 is	 revealed.	 From	predictive	modeling	and	precision	 agriculture	 to	 resource	allocation	optimization	 and	decision-
making	enhancement,	ANNs	and	ANFISs	emerge	as	catalysts	of	 innovation,	propelling	 the	agricultural	 sector	 toward	a	 future	
de�ined	by	sustainability	and	productivity.	
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1.	Introduction
In the vast expanse of agricultural landscapes, where the 
delicate dance between environmental factors and human 
intervention dictates the fate of harvests, the quest for 
innovation has perennially been a driving force[18,20,34]. At 
the nexus of this pursuit lies the burgeoning realm of arti�icial 
intelligence (AI), heralding a new era of precision and ef�iciency 
in crop production[5,12,13,14,15,16,22]. Among the myriad 
branches of AI, arti�icial neural networks (ANNs) and their 
adaptive counterparts particularly the fuzzy logic/ fuzzy 
inference system (FIS) and adaptive neuro-fuzzy inference 
system (ANFIS) stand as formidable tools[18,19,23,24,31,36], 
poised to revolutionize the agricultural landscape[7,25,38,39]. 
Harnessing the underlying principles of neural networks 
inspired by the intricacies of the human brain[8,45], ANNs offer 
a paradigm shift in the understanding and optimization of crop 
production systems[24,38]. As digital architects of intelligence, 
ANNs possess the remarkable ability to discern patterns, extract 
insights, and adapt to dynamic environmental conditions with

unparalleled dexterity[20,39]. This intrinsic adaptability 
renders them indispensable assets in the quest for sustainable 
agricultural practices[23,31,45]. In this chapter, we embark on 
an illuminating journey into the realm of arti�icial and adaptive 
neural networks[41], delving deep into their applications and 
implications in the realm of crop production[24]. Through a 
meticulous exploration of their architecture, functionality, and 
real-world applications[26], we uncover the transformative 
potential of ANNs in optimizing yields[45], mitigating risks, and 
fostering resilience in agricultural ecosystems[18,24]. From 
predictive modeling and precision agriculture to the 
optimization of resource allocation and the enhancement of 
decision-making processes[9,23], ANNs emerge as catalysts of 
innovation, driving the agricultural sector towards a future 
de�ined by sustainability and productivity[8,24]. With each 
layer of neural connectivity, we peel back the layers of 
complexity shrouding crop production, unraveling a tapestry of 
insights and possibilities that promise to rede�ine the 
boundaries of agricultural excellence[18]. As we navigate the 
fertile terrain of arti�icial and adaptive neural networks in crop 
production[8,18], we stand at the precipice of a technological 
renaissance, where the fusion of human ingenuity and machine 
intelligence heralds a new dawn for agriculture. 

2.	Arti�icial	Neural	Networks	(ANNs):	Modeling	intelligence	
inspired	by	the	human	brain
ANNs represent a class of computational models inspired by the 
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structure and function of biological neural networks found in 
the human brain[24]. ANNs have gained prominence across 
various �ields[24], including machine learning, pattern 
recognition, and data analysis[11], owing to their ability to learn 
complex patterns, make predictions, and perform tasks that 
were previously thought to require human intelligence[8,18]. In 
this detailed exploration, we delve into the architecture, 
functioning, learning algorithms, and diverse applications of 
ANNs, elucidating their pivotal role in modern computing and 
decision-making processes[41,20].

2.1.	Architecture	of	ANNs
At its  core,  an arti� icial  neural  network comprises 
interconnected nodes, or neurons, organized into layers[41]. 
The simplest form of an ANN consists of three layers: an input 
layer, one or more hidden layers, and an output layer[24]. 
Neurons within each layer are connected to neurons in adjacent 
layers through weighted connections, which transmit signals 
and modulate the strength of information �low throughout the 
network[18]. The architecture of an ANN can vary widely 
depending on the speci�ic task it is designed to perform[24], 
with more complex architectures featuring additional hidden 
layers and specialized types of neurons (Figure 1)[18].

2.2.	Functioning	of	ANNs
The functioning of an arti�icial neural network is characterized 
by a process known as forward propagation[41], wherein input 
data is passed through the network layer by layer, undergoing 
transformation and computation at each neuron (Figure 2). 
Each neuron in the hidden layers applies an activation function 
to the weighted sum of its inputs, introducing non-linearity and 
enabling the network to learn complex relationships within the 
data[18].  The output layer produces predictions or 
classi�ications based on the �inal activation patterns generated 
by the network[18]. During training, the network adjusts the 
weights of its connections using a process called back-
propagation, wherein errors between predicted and actual 
outputs are propagated backward through the network, 
allowing it to learn and re�ine its internal representations 
iteratively[45].

2.3.	Learning	Algorithms	in	ANNs
Several learning algorithms are used to train arti�icial neural 
networks, with the most common being gradient descent-based 
optimization techniques such as stochastic gradient descent 
(SGD), back-propagation, and variants thereof[41]. These 
algorithms iteratively adjust the weights of network 
connections in response to observed errors, seeking to 
minimize a prede�ined loss function that quanti�ies the disparity 
between predicted and actual outputs. Additionally, 
regularization techniques such as dropout, weight decay, and 
early stopping are employed to prevent over-�itting and improve 
the generalization ability of neural network models, ensuring 
robust performance on unseen data. 

Figure	 1.	 Diagrammatic	 representation	 of	 multi-layer	 feed-forward	
neural	 networks	 used	 for	modeling	 economic	 productivity	 (EP),	 total	
production	 cost	 (TCP),	 and	 bene�it-cost	 ratio	 (BC)	 used	 for	 potato	
production	in	Iran	(Adapted	from	[45]).	

Figure	2.	An	illustration	of	the	arti�icial	neural	networks	(ANNs)	model	
developed	for	the	prediction	of	crop	yields.

3.	 Adaptive	 Neuro-Fuzzy	 Inference	 Systems	 (ANFIS):	
Blending	 fuzzy	 logic	 and	 neural	 networks	 for	 intelligent	
decision-making
ANFIS represents a hybrid computational framework that 
combines the strengths of fuzzy logic and neural networks to 
model complex systems characterized by uncertainty, 
imprecision, and nonlinearity[3,7,25,35]. ANFIS leverages the 
linguistic modeling capabilities of fuzzy logic to capture 
qualitative relationships between input and output 
variables[27,28] while harnessing the learning and 
optimization capabilities of neural networks to adaptively 
adjust model parameters and improve accuracy[25,40]. In this 
detailed exploration, we delve into the architecture, functioning, 
learning mechanisms, and diverse applications of ANFIS, 
elucidating its signi�icance in solving real-world problems 
across various domains[19,25,36,37].

3.1.	Architecture	of	ANFISs
The architecture of an ANFIS comprises �ive main components 
(Figure 2). 

(I)	Fuzzy	sets	and	linguistic	variables	(Layer-1)
ANFIS uses linguistic variables and fuzzy sets to represent input 
and output variables in a human-interpretable manner[36,42]. 
Each linguistic variable is associated with fuzzy sets that 
describe its membership functions, capturing the qualitative 
semantics of the variable[27,28,40].

(ii)	Fuzzy	inference	system	(FIS)	(Layer-2)
The FIS de�ines the rules that govern the mapping between 
input and output variables[40]. These rules are expressed in the 
form of fuzzy 'if-then	rules', which encode expert knowledge and 
domain-speci�ic heuristics (Figure 3)[3,36,37].

(iii)	Membership	function	layer(Layer-3)
The membership function (MFs) layer computes the degree of 
membership of input variables to each fuzzy set, using Gaussian 
or triangular MFs[40]. This layer serves to fuzzify the crisp input 
data and transform it into linguistic terms[3,27,28].

(iv)	Rule	layer(Layer-4)
The rule layer computes the �iring strengths of each fuzzy rule 
by combining the degrees of membership of input variables to
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the antecedents of the rules[40]. This layer aggregates the fuzzy information from the MF's layer and generates rule 
activations[36,37].

(v)	Normalization	layer	and	defuzzi�ication	(Layer-5)
The normalization layer computes the normalized �iring strengths of each rule, which are then used to compute the weighted average 
of the consequent parameters. Finally, the defuzzi�ication process aggregates the weighted consequent parameters to produce the 
crisp output[36,37].

The functioning of an ANFIS involves two main phases, viz. training and inference phase (Figure 4). During the training phase, ANFIS 
adaptively adjusts its parameters using a combination of gradient descent and least squares optimization techniques[2,7,40]. This 
process involves forward propagation of input data through the FIS[36,37], followed by back-propagation of errors to update the 
parameters of the MFs and consequent parameters[10].In the inference phase, ANFIS applies the learned model to make predictions 
or decisions based on new input data[40]. The input data is fuzzi�ied using the membership function layer, and the fuzzy inference 
rules are evaluated to determine the output of the system[35]. The �inal output is obtained through defuzzi�ication, which converts 
the fuzzy output into a crisp value[27,28]. An ANFIS model developed to predict the grain yield of irrigated wheat in Abyek town of 
Ghazvin province, Iran has been illustrated in Figure 5 [25].

Figure	3.	Diagrammatic	representation	of	the	structure	of	multi-layer	
adaptive	neuro-fuzzy	inference	system	(ANFIS)	system.

Figure	 4.	Network	 con�iguration	 of	multi-layer	 adaptive	 neuro-fuzzy	
inference	system	(ANFIS)	system.

Figure	5.	ANFIS	model	topredict	 the	grain	yield	of	 irrigated	wheat	 in	
Abyek	town	of	Ghazvin	province,	Iran.	(Adopted	from[25]Naderloo	et	al.,	
2012)

3.2.	Applications	of	ANNs	and	ANFISs	in	crop	yield	prediction
In the realm of precision agriculture, the accurate prediction of 
crop yields plays a pivotal role in informing management 
decisions, optimizing resource allocation[32,43,46], and 
mitigating risks associated with �luctuating environmental 
conditions[8,25]. Arti�icial intelligence techniques, particularly 
ANN and ANFIS have emerged as powerful tools for crop yield 
prediction[24,45], offering unprecedented accuracy and 
�lexibility in modeling complex relationships between 
agronomic factors and crop productivity[18,19,24,25].
ANNs, inspired by the biological neural networks of the human 
brain, are computational models comprised of interconnected 
nodes, or neurons, organized into layers. Through a process of 
iterative learning, ANNs can discern patterns and relationships 
within datasets, enabling them to make predictions based on 
input variables. In the context of crop yield prediction[45], 
ANNs have demonstrated remarkable ef�icacy in capturing non-
linear relationships between environmental variables and crop 
performance[8,18].ANNs excel in handling large and diverse 
datasets[45], making them well-suited for incorporating a wide 
range of agronomic parameters such as soil characteristics[47], 
weather patterns, crop management practices, and genetic 
factors. By training on historical yield data and corresponding 
environmental variables, ANNs can learn complex patterns and 
trends, thereby enabling accurate predictions of future crop 
yields[24]. Nonetheless, ANNs exhibit a high degree of 
adaptability, allowing them to adjust their internal parameters 
in response to changes in environmental conditions or input 
data[24]. 
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This inherent �lexibility enhances the robustness of ANN-based 
crop yield models, ensuring their applicability across diverse 
geographic regions and cropping systems[18]. One of the key 
advantages of ANNs is their ability to handle uncertainties and 
noisy data, which are inherent in agricultural datasets[8,19]. 
Through techniques such as dropout regularization and 
ensemble learning, ANNs can mitigate over-�itting and improve 
the generalization ability of crop yield prediction models, 
t h e re by  e n h a n c i n g  t h e i r  re l i a b i l i t y  i n  re a l - wo r l d 
applications[8].
ANFIS represents a hybrid AI approach that combines the 
strengths of neural networks and fuzzy logic to model complex 
systems characterized by uncertainty and imprecision[18,19]. 
ANFIS integrates fuzzy logic principles for linguistic modeling 
with neural network techniques for parameter optimization, 
resulting in a  powerful  framework for data-driven 
inference[25].In the context of crop yield prediction, ANFIS 
offers several advantages over traditional statistical models and 
purely data-driven approaches[25]. By incorporating expert 
knowledge in the form of linguistic rules, ANFIS can capture the 
qualitative relationships between input variables and crop 
yields, complementing the quantitative insights provided by 
neural networks.ANFIS models are particularly adept at 
handling uncertainty and imprecision in agricultural data sets, 
which arise from factors such as variability in soil 
properties[6,47], weather �luctuations, and subjective 
interpretations of agronomic practices[25]. By employing fuzzy 
logic-based inference mechanisms, ANFIS can effectively reason 
with uncertain and incomplete information, thereby improving 
the robustness and interpretability of crop yield prediction 
models. Additionally, ANFIS models are inherently transparent 
and interpretable, allowing agronomists and decision-makers 
to gain insights into the underlying factors driving crop 
productivity[19]. This interpretability enhances the trust and 
acceptance of ANFIS-based predictions in agricultural decision-
making processes and facilitating the adoption of data-driven 
management strategies.

3.3.	Applications	and	case	studies
The application of ANN and ANFIS techniques in crop yield 
prediction spans a diverse array of crops and agroecological 
regions worldwide[24]. From staple cereals such as maize, 
wheat, and rice to cash crops like soybeans, cotton, and 
sugarcane, ANN and ANFIS models have been deployed to 
forecast yields with high accuracy and reliability[8,18,24]. 
Researchers have developed ANN-based models to predict 
maize yields based on soil properties[6,47], weather variables, 
and agronomic practices, achieving prediction accuracies 
exceeding traditional regression-based approaches. Similarly, 
ANFIS models have been employed to forecast rice yields in 
response to varying irrigation schedules and fertilizer 
applications, providing valuable insights for optimizing water 
and nutrient management strategies[18]. By integrating 
historical yield data with biophysical factors such as 
temperature regimes, soil moisture levels, and crop phenology, 
ANN and ANFIS models have enabled growers to anticipate fruit 
yields and plan harvest operations more effectively[8,19,47].

4.	Applications	of	ANNs	and	ANFISs	in	energy	optimization	in	
crop	production
Ef�icient energy utilization is a cornerstone of sustainable 
agriculture, crucial for maximizing productivity while 
minimizing environmental impact. Contextually, ANNs and 
ANFISs have emerged as indispensable tools, offering 

innovative solutions for energy optimization in crop production 
systems[19,24]. Through their ability to model complex 
relationships and adapt to dynamic environmental conditions, 
ANN and ANFIS techniques hold immense potential for 
enhancing energy ef�iciency[25], reducing resource inputs, and 
promoting sustainable practices across agricultural 
landscapes[8,24]. In the context of energy optimization in crop 
production, ANNs offer several key advantages:

1.	 Predictive	 modeling: ANNs excel in predicting energy 
consumption patterns and optimizing energy usage in various 
agricultural operations, such as irrigation, machinery 
operation, and greenhouse management[8,18]. By analyzing 
historical energy consumption data alongside environmental 
variables such as weather conditions, crop growth stages, and 
soil moisture levels, soil thermal resistivity ANNs can forecast 
energy demands and recommend optimal strategies for energy 
allocation[6,24,47].

2.	 Resource	 allocation: ANNs facilitate ef�icient resource 
allocation by optimizing the timing and intensity of energy 
inputs throughout the crop production cycle[8,24]. By 
integrating real-time sensor data and monitoring systems, 
ANNs can dynamically adjust energy usage based on crop 
growth dynamics, pest pressures, and other agronomic factors, 
thereby minimizing waste and maximizing resource 
utilization[18].

3.	Decision	support	systems: ANNs serve as powerful decision 
support tools for farmers and agricultural stakeholders, 
providing actionable insights for optimizing energy-intensive 
processes [24]such as irrigation scheduling, nutrient 
management, and crop protection[18]. By leveraging ANNs to 
analyze complex datasets and identify energy-saving 
opportunities, farmers can make informed decisions that 
enhance productivity while reducing their environmental 
footprint[19,24].

Conversely, ANFIS offers several unique capabilities:
1.	 Linguistic	modeling: ANFIS integrates expert knowledge 
and domain-speci�ic rules into its modeling framework, 
allowing it to capture qualitative relationships between input 
variables and energy consumption patterns[19].  By 
incorporating fuzzy logic-based inference mechanisms, ANFIS 
can reason with uncertain and imprecise data, enhancing the 
robustness and interpretability of energy optimization models.

2.	 Rule-based	 control	 systems :  ANFIS enables the 
development of rule-based control systems for optimizing 
energy usage in crop production operations. By encoding 
domain-speci�ic rules and heuristics into the inference process, 
ANFIS can generate adaptive control strategies that respond 
dynamically to changing environmental conditions and crop 
requirements, thereby maximizing energy ef�iciency and 
minimizing waste.

3.	 Model	 interpretability: ANFIS models are inherently 
transparent and interpretable, allowing agricultural 
stakeholders to gain insights into the underlying factors driving 
energy consumption and optimization[18]. By visualizing the 
fuzzy inference process and linguistic rules, ANFIS facilitates 
collaboration and decision-making among farmers, 
agronomists, and energy experts, fostering a holistic approach 
to energy management in agriculture.
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4.1.	Applications	and	case	studies
The application of ANN and ANFIS techniques in energy 
optimization in crop production spans a wide range of 
agricultural systems and practices[24]. From precision 
irrigation and mechanized farming to renewable energy 
integration and greenhouse automation, ANN and ANFIS 
models have been deployed to optimize energy usage and 
reduce environmental footprint in diverse cropping systems 
worldwide. For example, researchers have developed ANN-
based models to predict energy requirements for irrigation 
scheduling, taking into account factors such as crop water 
demand, soil moisture levels,  and irrigation system 
ef�iciency[47]. By optimizing irrigation scheduling based on 
ANN predictions, farmers can minimize energy usage while 
maintaining optimal soil moisture levels, thereby conserving 
water resources and reducing pumping costs. Similarly, ANFIS 
techniques have been applied to optimize energy usage in 
greenhouse environments, where maintaining optimal 
temperature and humidity levels is critical for crop growth and 
productivity. By integrating sensor data and climate control 
systems with ANFIS-based control algorithms, greenhouse 
operators can dynamically adjust heating, cooling, and 
ventilation systems to minimize energy consumption while 
ensuring optimal growing conditions[30]. Moreover, the 
integration of renewable energy sources such as solar and wind 
power with ANN and ANFIS models has further enhanced 
energy optimization in agriculture[19,24]. By leveraging 
predictive modeling and optimization techniques, farmers can 
maximize the utilization of renewable energy resources while 
minimizing reliance on fossil fuels, thereby reducing 
greenhouse gas emissions and mitigating climate change 
impacts[2].

5.	Applications	of	ANNs	and	ANFIS	in	mitigating	greenhouse	
gas	emissions	in	crop	production
The imperative to mitigate greenhouse gas (GHG) emissions in 
agriculture has become increasingly urgent as the global 
community grapples with the challenges of climate change[29]. 
An ANN and ANFIS emerged as powerful tools for identifying, 
quantifying, and mitigating GHG emissions associated with crop 
production systems[24]. By leveraging their capabilities in 
modeling complex relationships and optimizing management 
strategies, ANN and ANFIS techniques offer innovative solutions 
for reducing agricultural emissions and promoting climate-
resilient farming practices[19]. In the context of mitigating GHG 
emissions in crop production, ANNs offer several key 
advantages:

1.	Emission	modeling: ANNs excel in modeling and predicting 
GHG emissions from agricultural activities, such as enteric 
fermentation, manure management, fertilizer application, and 
soil organic matter decomposition. By analyzing historical 
emission data alongside environmental variables like soil 
properties, climate conditions, and management practices, 
these ANNs can quantify emissions and identify key drivers of 
GHG emission contributors .

2.	Optimization	of	management	practices: ANNs facilitate the 
optimization of management practices to reduce GHG emissions 
while maintaining crop productivity. By simulating different 
scenarios and evaluating the impact of management 
interventions on emissions, ANNs can identify the strategies to 
cut down emissions intensity per unit of yield by optimizing 
fertilizer application rates, implementing conservation tillage 

practices, and integrating cover crops into cropping systems.

3.	Decision	support	systems: ANNs serve as decision support 
tools for farmers, policymakers, and agricultural stakeholders 
by providing actionable insights for designing climate-smart 
farming systems. With the Integration of emission modeling 
with agronomic data and economic considerations, ANNs 
enable informed decision-making that balances environmental 
sustainability with economic viability, thereby fostering the 
adoption of emission-reducing practices at scale.
Similarly, in the context of GHG emissions mitigation in crop 
production, ANFIS offers several unique capabilities:

1.	 Linguistic	modeling: ANFIS integrates expert knowledge 
and domain-speci�ic rules into its modeling framework, 
allowing it to capture qualitative relationships between input 
variables and GHG emissions[19]. By incorporating fuzzy logic-
based inference mechanisms, ANFIS can reason with uncertain 
and imprecise data,  enhancing the robustness and 
interpretability of emission mitigation models.

2.	 Rule-based	 control	 systems :  ANFIS enables the 
development of rule-based control systems for optimizing 
management practices to reduce GHG emissions. By encoding 
domain-speci�ic rules and heuristics into the inference process, 
ANFIS can generate adaptive management strategies that 
respond dynamically to changing environmental conditions and 
emission sources, thereby maximizing emission reductions 
while minimizing trade-offs with other agronomic objectives.

3.	 Model	 interpretability: ANFIS models are inherently 
transparent and interpretable, allowing stakeholders to gain 
insights into the underlying factors driving GHG emissions and 
mitigation strategies. By visualizing the fuzzy inference process 
and linguistic rules, ANFIS facilitates collaboration and 
decision-making among farmers,  agronomists ,  and 
policymakers, fostering a participatory approach to emission 
reduction in agriculture.

5.1.	Applications	and	case	studies
The application of ANN and ANFIS techniques in GHG emissions 
mitigation in crop production spans a wide range of agricultural 
systems and practices. From precision nutrient management 
and conservation agriculture to livestock waste management 
and renewable energy integration, ANN and ANFIS models have 
been deployed not only to optimize management strategies and 
also to reduce the emissions intensity in diverse cropping 
systems worldwide. For example, researchers have developed 
ANN-based models to predict GHG emissions from livestock 
operations, taking into account factors such as feed 
composition, animal physiology, and manure management 
practices. By simulating different feeding regimes and manure-
handling techniques, ANN models can identify strategies for 
minimizing methane and nitrous oxide emissions from livestock 
production while maintaining animal productivity and welfare. 
Similarly, ANFIS techniques have been applied to optimize 
fertilizer application rates and timing in crop production 
systems, aiming to reduce nitrous oxide emissions from soil 
nitrogen sources. By integrating soil moisture data, crop 
nutrient requirements, and weather forecasts with ANFIS-
based decision support systems, farmers can optimize nutrient 
management practices to minimize emissions with 
enhancement in nutrient use ef�iciency and crop yields. 
Moreover, the integration of renewable energy sources such as 
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solar and bioenergy with ANN and ANFIS models has further 
enhanced emission mitigation efforts in agriculture. By 
leveraging predictive modeling and optimization techniques, 
farmers can maximize the utilization of renewable energy 
resources while minimizing reliance on fossil fuels, thereby 
reducing emissions from energy-intensive operations such as 
irrigation, machinery operation, and heating[30].

6.	 Applications	 of	 ANNs	 and	 ANFISs	 in	 mitigating	
environmental	impacts	in	crop	production
In the face of escalating environmental challenges, the 
agricultural sector is under increasing pressure to adopt 
sustainable practices that minimize negative impacts on 
ecosystems and natural resources[4]. Recently, ANNs and 
ANFISs have been emerged as powerful tools for mitigating 
environmental impacts in crop production, offering innovative 
solutions for optimizing resource use[44], reducing pollution, 
and promoting ecosystem resilience[17]. Through their ability 
to model complex relationships and optimize management 
strategies, ANN and ANFIS techniques provide valuable insights 
and decision support for designing environmentally sustainable 
farming systems[21]. Through iterative learning processes, 
ANNs can discern patterns and relationships within datasets, 
enabling them to make predictions and optimizations based on 
input variables. In the context of mitigating environmental 
impacts in crop production, ANNs offer several key advantages:

1.	 Environmental	 Modeling: ANNs excel in modeling and 
predicting environmental impacts associated with agricultural 
activities, such as soil erosion[1], water pollution, and habitat 
loss[21]. By analyzing historical environmental data alongside 
agronomic variables such as land use, crop rotation, and tillage 
practices, ANNs can quantify impacts and identify key drivers 
contributing to environmental degradation[44].

2.	Optimization	of	management	practices: ANNs facilitate the 
optimization of management practices to reduce environmental 
impacts while maintaining crop productivity. By simulating 
different scenarios and evaluating the impact of management 
interventions on environmental outcomes, ANNs can identify 
strategies for minimizing pollution, conserving natural 
resources, and enhancing biodiversity within agricultural 
landscapes[44].

3.	Decision	support	systems: ANNs serve as decision support 
tools for farmers, policymakers,  and environmental 
stakeholders, providing actionable insights for designing 
sustainable farming systems. By integrating environmental 
modeling with socio-economic considerations, ANNs enable 
informed decision-making that balances environmental 
conservation with economic viability, thereby fostering the 
adoption of environmentally sustainable practices at scale.
Similarly, ANFIS offers several unique capabilities viz.

1.	 Linguistic	modeling: ANFIS integrates expert knowledge 
and domain-speci�ic rules into its modeling framework, 
allowing it to capture qualitative relationships between input 
variables and environmental impacts. By incorporating fuzzy 
logic-based inference mechanisms, ANFIS can reason with 
uncertain and imprecise data, enhancing the robustness and 
interpretability of environmental impact models.

2.	 Rule-based	 control	 systems :  ANFIS enables the 
development of rule-based control systems for optimizing 

management practices to reduce environmental impacts. By 
encoding domain-speci�ic rules and heuristics into the inference 
process, ANFIS can generate adaptive management strategies 
that respond dynamically to changing environmental 
conditions and landscape characteristics, thereby maximizing 
environmental bene�its while minimizing trade-offs with other 
agronomic objectives.

3.	 Model	 interpretability: ANFIS models are inherently 
transparent and interpretable, allowing stakeholders to gain 
insights into the underlying factors driving environmental 
impacts and mitigation strategies. By visualizing the fuzzy 
inference process and linguistic rules, ANFIS facilitates 
collaboration and decision-making among farmers, 
agronomists, and environmental experts, fostering a 
participatory approach to environmental management in 
agriculture.

6.1.	Applications	and	case	studies
The application of ANN and ANFIS techniques in mitigating 
environmental impacts in crop production spans a wide range of 
agricultural systems and practices[21]. From soil conservation 
and water management to pesticide reduction and habitat 
restoration, ANN and ANFIS models have been deployed to 
optimize management strategies and promote environmental 
sustainability in diverse cropping systems worldwide. For 
example, researchers have developed ANN-based models to 
predict soil erosion rates and identify high-risk areas prone to 
erosion within agricultural landscapes[1]. By integrating soil 
properties, topographic data, and land use information with 
ANN predictions, farmers can implement targeted erosion 
control measures such as contour plowing, cover cropping, and 
terracing, thereby reducing soil loss and preserving soil 
fertility[1].
Similarly, ANFIS techniques have been applied to optimize 
pesticide application rates and minimize off-site pollution in 
agricultural watersheds. By analyzing pesticide transport 
pathways, hydrological dynamics, and ecological risk factors, 
ANFIS models can recommend spatially targeted application 
strategies that minimize environmental exposure while 
maximizing pest control ef�icacy, thereby reducing ecological 
risks and protecting water quality. Moreover, the integration of 
ecosystem services such as pollination, pest control, and 
nutrient cycling into ANN and ANFIS models has further 
enhanced environmental sustainability in agriculture. By 
quantifying the bene�its of  ecosystem services and 
incorporating them into decision-making processes, farmers 
can design landscape-level management strategies that 
promote biodiversity, resilience, and ecosystem health, thereby 
fostering a synergistic relationship between agriculture and the 
environment.
In the initial con�iguration, Figure 6 portrays that input 
parameters were partitioned into three distinct groups, with 
each group serving as input variables for individual ANFIS 
networks [19]. The outputs generated by ANFIS networks 1–3 
were subsequently fed into ANFIS 4 to forecast grain yield. The 
alternative arrangement consisted of seven ANFIS networks. In 
this setup, energy inputs were initially clustered into four 
groups, with each group being inputted into a separate ANFIS 
network (Figure 6). ANFIS 5 was constructed from the outputs 
of ANFIS-1 and 2, while ANFIS-3 and 4 outputs were 
amalgamated as inputs for ANFIS-6. Ultimately, the outputs of 
ANFIS-5 and 6 were integrated to form ANFIS-7, responsible for 
predicting wheat yield.
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In the third topology, input parameters were divided into �ive 
segments, each individually serving as inputs for separate 
ANFIS networks. Consequently, �ive ANFIS networks were 
established in the initial stage. ANFIS-6 was then created from 
the forecasted values of ANFIS 1 and 2, with ANFIS 3–5 outputs 
subsequently employed in ANFIS-7. In the �inal stage, ANFIS 8 
was tasked with modeling yield using the predicted values from 
ANFIS-6 and 7 [19] (Figure 6).
Sefeedpari et	 al. [33] introduced an innovative approach 
utilizing ANFIS for predicting egg yield, subsequently 
comparing its performance with that of an ANN model. In their 
study, an ANFIS model was constructed wherein inputs were 
segregated into two distinct groups: the �irst group comprised 
feed supply, fuel, and machinery, while the second cluster 
included pullet, electricity, and labor energies. Subsequently, 
the outputs from these networks were fed into the ANFIS-3 
network to obtain predicted values of fruit yield (Figure 7). The 
evaluation of the ANFIS 3 network yielded a coef�icient of 
determination (R²) of 0.92, root mean square error (RMSE) of 
448.1, and mean absolute percentage error (MAPE) of 0.014. 
These results were indicated the ef�icacy of the ANFIS model in 
predicting egg yield on poultry farms accurately. Furthermore, 
comparative analysis with ANN models revealed statistical 
parameters of R² = 0.81, RMSE = 751.96, and MAPE = 0.019, 
highlighting the superior performance of ANFIS in this context. 
As a recommendation for future research endeavors, the 
authors suggest exploring ANFIS models with multi-layered 
structures to ascertain the optimal number of layers, potentially 
enhancing predictive accuracy and model robustness.

Figure	 6.	 ANFIS-1	 (top	 pane)	 and	 ANFIS-1	 (ubottom	 pane)	
developed	 for	 predicting	 wheat	 grain	 yield	 based	 on	 energy	
inputs.	(Adopted	from	[19])

Figure	 7.	 ANFIS	 model	 was	 developed	 for	 prophesying	 egg	
production	based	on	energy	consumption.	(Adopted	from	[33])

7.	Conclusions
In conclusion, ANN and ANFIS stand as formidable pillars in 
revolutionizing various facets of crop production, offering 
robust solutions to intricate challenges faced by the agricultural 
sector. These advanced modeling techniques provide 
unparalleled accuracy, �lexibility, and interpretability in 
predicting crop yield, optimizing energy usage, mitigating GHG 
emissions, and minimizing environmental impacts. The 
integration of ANN and ANFIS models with cutting-edge 
technologies such as remote sensing, IoT, precision agriculture, 
and renewable energy holds immense promise for enhancing 
the ef�iciency, sustainability, and resilience of crop production 
systems worldwide. By harnessing the power of arti�icial 
intelligence to model complex relationships, adapt to dynamic 
environmental conditions, and optimize resource management, 
farmers and agricultural stakeholders can navigate the 
complexities of modern agriculture with precision and 
foresight. As the global community intensi�ies efforts to address 
pressing challenges of climate change, food security, and 
environmental degradation. The adoption of ANN and ANFIS 
techniques are pivotal towards achieving the goal of practicing 
sustainable agricultural methods . By fostering collaboration, 
innovation, and knowledge exchange, the integration of ANN 
and ANFIS models into agricultural decision-making processes 
can catalyze transformative change, ushering in a new era of 
resilience, productivity, and sustainability in crop production. In 
summary, the transformative potential of ANN and ANFIS 
extends far beyond their individual applications, shaping the 
future of agriculture and paving the way for a more resilient, 
sustainable, and equitable food system. 

Future	 scope	 of	 study:	 In agriculture, where complex 
environmental circumstances and human interventions affect 
crop yields, innovation has traditionally driven progress. In this 
aspect, arti�icial intelligence (AI) has disrupted agricultural 
production by improving precision and ef�iciency. Arti�icial 
neural networks (ANNs) and its adaptive counterparts, such as 
the fuzzy logic/fuzzy inference system (FIS) and the adaptive 
neuro-fuzzy inference system (ANFIS), are strong AI tools that 
might alter agriculture. But these tools are new especially to the 
farmers. Therefore role of extension scientists especially Krishi 
Vigyan Kendras which are working in between the farmers 
could played a pivotal role by empowering the farmers with 
trainings related to these AI tools. By using these tools farmers 
could easily made their agriculture sustainable after reducing 
different inputs footprints viz. water, fertilizers, insecticides etc. 
Agriculture production system knowledge and optimisation are 
transformed by arti�icial neural networks (ANNs). They are 
inspired by the human brain and have exceptional ability to
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 identify patterns, extract insights, and adapt to changing 
environmental conditions. There is a huge scope for carrying 
out the research experiments in this direction under different 
agro-climatic conditions and texturally divergent soils for its 
wider application.
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