

Original Research Article

08 October 2024: Received 11 November 2024: Revised 26 November 2024: Accepted 13 December 2024: Available Online

https://aatcc.peerjournals.net/

Open Access

Influence of Phosphorus and Sulphur Application oon Nutrient Content and Uptake by Sesamum in High Phosphorus Soils of Telangana

A N Jhansi¹, T Srijaya², A Madhavi³ and P Spandana bhatt⁴

¹Department of Soil Science and Agricultural Chemistry, College of Agriculture, PJTAU, Rajendranagar, Hyderabad -30, Telangana, India
²Principal Scientist, Agricultural Reasearch Station, Tornala, Siddipet, Telangana, India
³Principal Scientist & Head, ISHM, ARI, Rajendranagar, Hyderabad-30, Telangana, India
⁴Scientist, IRR, ARI, Rajendranagar, Hyderabad-30, Telangana, India

ABSTRACT

A pot culture experiment was conducted on "Influence of Phosphorus and Sulphur Application on Nutrient Content and Uptake by Sesamum in High Phosphorus soils of Telangana". In this experiment, two high phosphorus status soils were selected consisting of 67.29 kg P205 ha⁻¹ and 83.46 kg P205 ha-1. Treatments mainly include five levels of phosphorus (P0-0, P1-5, P2-10, P3-15 & P4-20 kg ha-1 of soil) and four levels of sulphur (S0-0, S1-10, S2-20 & S3-30 kg ha-1 of soil) and it was conducted factorial completely randomized design. Results indicated that a significant increase in nutrient content and uptake by sesamum crop could be achieved by combined application of 15 kg P205 ha⁻¹ (75 % RDP) + 20 kg S ha⁻¹ in both high available phosphorus soils. Among the various treatments tested, the highest nutrient content and uptake by sesamum crop was recorded with a combined application of 75 per cent RDP (15 kg P205 ha⁻¹) + 20 kg S ha⁻¹ in soil 1 and 50 per cent RDP (10 kg P205 ha⁻¹) + 20 kg S ha⁻¹ in soil 2.

Keywords: Sesamum, high P soil, nitrogen, phosphorus, potassium, and sulphur content and their uptake

INTRODUCTION

In intensively cultivated areas, the indiscriminate application of phosphorus was leading to phosphorus accumulation in the top layers of soil. In some studies, it was revealed that at high phosphorus status in soils, the recommended dose of phosphorus can be reduced without any reduction in the economic yield of the crop. It was observed that P dose could be skipped in either of any crop or reduced to 50 per cent under the rice-wheat sequence, if the soil contains high available phosphorus [7]. Reduced P application by 25-50 per-cent from the current RDP in high P soils is reported to be a possible saving measure without sacrificing the yields in crops like rice, sunflower and in rice-rice and rice-sunflower-cropping sequences [1; 12; 18 and 22].

Sulphur plays a key role in plant metabolism, synthesis of essential oils, chlorophyll formation, and development of cells. It also increases cold resistance and drought hardiness of oilseed crops. Use of sulphur free fertilizers, heavy sulphur removal by the crops under intensive cultivation and neglect of sulphur replenishment contributed to widespread sulphur deficiencies in arable soils. In recent years sulphur has become one of the major limiting nutrients for oilseeds. In crop sequences involving oilseeds, sulphur application was found to be profitable.

In Telangana State, the occurrence of high- P soils as evidenced by the recording of > 70 per-cent of soils having high P status. Thus, in intensively cultivated areas where fertilizer use has been rampant, the reports of high P soils are coming into light.

*Corresponding Author: A N Jhansi

DOI: https://doi.org/10.21276/AATCCReview.2024.12.04.661 © 2024 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Recent reports indicated that more than 80 per-cent of soils in Nizamabad, Kamareddy, Rajanna Siricilla, Karimnagar, Siddipet, Jagtiyal and Peddapalli districts of Telangana state have high P soils. Hence, the above study was conducted as there was little information on the impact of various sulphur levels on sesamum grown in high P soils.

MATERIALS and METHODS

Initially, soils were screened for available phosphorus in and around Ranga Reddy district. Based on available phosphorus status, two soils were selected for conducting pot culture experiment S1 (67.29 kg P205 ha⁻¹) and S2 (83.46 kg P205 ha⁻¹). In the above- selected soils (S_1 and S_2) pot culture experiment was conducted with sesamum as test crop (JCS 1020) during summer 2022-23 at the Agricultural Research Institute, Rajendranagar and Hyderabad. Initial soil characteristics of the experimental soil was done by following standard procedures and are presented in table 1.

Treatments mainly comprise of five levels of phosphorus (P0-0, P_1 - 5, P_2 -10, P_3 -15 and P_4 -20 kg P205 ha⁻¹ of soil), four levels of sulphur $(S_0-0, S_{1-1}0, S_2-20 \text{ and } S_3-30 \text{ kg S ha}^{-1} \text{ of soil})$ with a total of twenty treatmental combinations with four replications laid out in Factorial Completely Randomized Design. The recommended dose of fertilizers for sesamum is 60-20-20 kg N, P2O5 & K2O ha-¹. Nitrogen, phosphorus, potassium and sulphur nutrient requirements were met through Urea, diammonium hydrogen phosphate, potassium chloride and potassium sulphate respectively. Entire dose of phosphorus, potassium and sulphur were applied as basally for all the pots as per the treatments while fifty percent of nitrogen was applied as basal. The remaining fifty percent of nitrogen was applied at 30 DAS. All the prophylactic plant protection measures were adopted as and when needed during the crop growth period. Statistical analysis was carried out as per the procedures [16].

Table 1 Physico-chemical and chemical properties of the experimental soil Particulars

Soil parameters	Soil (S1)	Soil (S2)
Textural class	Sandy clay loam	Sandy clay loam
Soil reaction (pH)	7.52	7.68
Electrical conductivity (dS m ⁻¹⁾	0.36	0.28
Organic carbon (g kg ⁻¹)	2.1	2.5
Available nitrogen (kg N ha ⁻¹)	151	157
Available phosphorus (kg P2O5 ha-1)	67.29	83.46
Available potassium (kg K ₂ O ha ⁻¹)	386	394
Available sulphur (mg S kg ⁻¹)	16	18

RESULTS AND DISCUSSION

Effect of different levels of phosphorus and sulphur on nitrogen content and uptake by sesamum seed

Phosphorus application at varied levels has significantly influenced the nitrogen content of sesamum seed in high native phosphorus status soils and was tabulated in Tables 2 and 3. Maximum nitrogen content (3.69 per cent) and uptake (424 mg pot-1) by sesamum seed was recorded in treatment receiving P_{100} (20 kg P_2O_5 ha⁻¹) but it was statistically on par with P_{75} (3.65) per cent and 416 mg pot⁻¹). In high native phosphorus soils, improvement in the nitrogen content of sesamum seed was not significantly influenced when phosphorus application was raised from P75 to P100. Phosphorus application has raised the seed nitrogen content and uptake in high native phosphorus status soils due to the fact that phosphorus stimulates the early development of root growth which in turn might have facilitated efficient utilization of nutrients from deeper layers of soil. The above findings were in concurrence [5] and [23] in low to medium P- status soils. In high native phosphorus status soils also, similar results were seen.

Among various sulphur levels, treatment receiving S_{30} (30 kg S ha⁻¹) has recorded significantly highest nitrogen content (3.57 per-cent) and uptake (407 mg pot⁻¹) in seed over other sulphur doses but at par with S_{20} (3.55 per-cent and 401 mg pot⁻¹).

Sulphur application might have resulted in profuse vegetative and root growth, thereby activating the absorption of nutrients, which in turn enhanced nutrients concentration and dry matter accumulation. Similar findings were reported [19] and [17]. From the above findings we can conclude that the crop requires sufficient amounts of phosphorus along with sulphur to meet the crop requirements in high P soils.

A significant interaction effect was observed between different doses of phosphorus and sulphur on nitrogen content and uptake by sesamum seed in high P soils. The highest nitrogen content (3.84 per cent) in sesamum seed was seen in the treatment receiving P_{100} S₃₀ (20 kg P_2 O₅ ha⁻¹ + 30 kg S ha⁻¹) and it is on par with the

treatments receiving P_{100} either with S_{20} or S_{10} and P_{75} either with S_{30} or S_{20} or S_{10} respectively. It was opined that there was the synergistic effect of phosphorus and sulphur on nitrogen uptake by sesamum seed at lower levels of application (13).

The overall interaction between soils, phosphorus, and suphur was found to be statistically significant. Maximum nitrogen (3.76 per cent) content was attained in the treatments receiving the combined application of P₁₀₀ @ 20 kg P₂O₅ ha⁻¹ and sulphur (30 kg S ha⁻¹) but on par with treatments P₁₀₀ S₂₀, P₁₀₀ S₁₀, P₇₅ S₃₀, P₇₅ S₂₀ and P₇₅ S₁₀ in soils pertaining to S₁ (67.29 kg P₂O₅ ha⁻¹). In S₂ soils (83.46 kg P₂O₅ ha⁻¹), seed nitrogen content in sesamum was highest (3.92 per cent) in treatment applied with P₁₀₀ @ 20 kg P₂O₅ ha⁻¹ and sulphur (30 kg S ha⁻¹) but at par with P₁₀₀ S₂₀, P₁₀₀ S₁₀, P₇₅ S₃₀, P₇₅ S

Effect of different levels of P and S on nitrogen content and uptake by sesamum stalk

Nitrogen content and uptake by sesamum stalk were significantly influenced by phosphorus application in high native phosphorus status soils and given in Tables 4 and 5. The highest nitrogen content (1.49 per-cent) and uptake (322 mg pot⁻¹) by sesamum stalk was recorded in the treatment receiving P₁₀₀ (20 kg P₂O₅ ha⁻¹) but it is statistically on par with P₇₅ (1.47 per cent & 316 mg pot⁻¹). Among various sulphur levels, treatment receiving S₃₀ (30 kg S ha⁻¹) has recorded significantly highest nitrogen content (1.46 per-cent) and uptake (314 mg pot⁻¹) by stalk over other sulphur doses but at par with S₂₀ (1.43 per-cent and 304 mg pot⁻¹).

A significant interaction effect was observed between different doses of phosphorus and sulphur on nitrogen content and uptake by sesamum stalk in high P soils. The highest nitrogen content 1.58 per-cent and uptake 348 mg pot⁻¹ by stalk was recorded in $P_{100}S_{30}$ (20 kg P_2O_5 ha⁻¹ & 30 kg S ha⁻¹) but on par with $P_{75}S_{20}$.

Interaction effect among two selected soils, phosphorus and sulphur on the nitrogen content of sesamum stalk was found to be statistically significant. In both S₁ (67.29 kg P₂O₅ ha⁻¹) & S₂ (83.46 kg P₂O₅ ha⁻¹) soils, highest nitrogen content (1.55 & 1.60 per cent) in sesamum stalk was noted in the P₁₀₀S₃₀ combination. Phosphorus application has significantly raised the nitrogen content in sesamum stalk [5] and [23].

Effect of different levels of P and S on phosphorus content and uptake by sesamum seed

Phosphorus application has significantly influenced phosphorus content in sesamum seed in high native phosphorus status soils as presented in table 6 and 7. Maximum phosphorus content (0.46 per cent) and uptake (53 mg pot⁻¹) by sesamum seed was recorded with the treatment receiving P₁₀₀ (20 kg P₂O₅ ha⁻¹) but on par with P₇₅. It might be due to the availability of more phosphorus in the initial stages which might have led to stronger root growth. As the root growth was amplified more phosphorus was absorbed from soil and resulted in increased phosphorus content in seed. The above findings are in accordance with [23].

Phosphorus content and uptake by sesamum seed was significantly increased with application of varied sulphur levels. Sulphur applied @ 30 kg S ha⁻¹ has recorded significantly higher phosphorus content (0.43 per cent) and uptake (49 mg pot⁻¹) by sesamum seed but on par with S₂₀ (0.41 per-cent and 46 mg pot⁻¹). [26] observed that phosphorus content in sesamum seed was increased with the addition of sulphur. It may be due to the mobilization of soil phosphorus into an accessible form by the action of the acid produced due to the application of sulphur. It resulted in the availability of more phosphorus in soil and later more absorption. An enhancement in phosphorus uptake with sulphur addition was reported in sunflower [10]. Similar findings were also accorded by [14] in sesamum at low and medium P-status soils.

A significant interaction was observed between phosphorus and sulphur on phosphorus content and uptake by sesamum seed. The highest phosphorus content (0.49 per cent) and uptake (59 mg pot⁻¹) by sesamum seed was recorded in the treatmental combination of P100S30 which is on par with P100 S20, P75S30 and P75 S20. Synergistic interaction was seen between phosphorus and sulphur on phosphorus content and uptake in toria crop at lower levels of application [4]. Similarly, [13] and [8] has reported phosphorus uptake was enhanced with combined application of phosphorus and sulphur in soybean. The interaction impact between phosphorus, sulphur, and two high P soils on phosphorus concentration of sesame seed was found to be statistically significant. Maximum phosphorus content (0.47 per-cent) in sesamum seed was attained in the treatment combination $P_{100}S_{30}$ which is on par with $P_{100}S_{20}$, $P_{75}S_{30}$, and $P_{75}S_{20}$ in soils.

Effect of different levels of P and S on phosphorus content and uptake by sesamum stalk

Different levels of phosphorus application have significantly influenced phosphorus content and uptake by sesamum stalk in high native phosphorus status soils as shown in Table 8 and 9. The highest phosphorus content (0.31 per-cent) and uptake (66 mg pot⁻¹) by sesamum stalk was recorded in treatment receiving P_{100}

(20 kg P_2O_5 ha⁻¹) but it was found to be at par with treatment receiving phosphorus application @ 15 kg P_2O_5 ha⁻¹.

Phosphorus content and uptake by sesamum stalk were significantly increased with varied sulphur levels. Application of sulphur @ 30 kg S ha⁻¹ has recorded significantly higher phosphorus content (0.28 per-cent) and uptake (60 mg pot⁻¹) by sesamum stalk but on par with S₂₀ while the lowest phosphorus content and uptake by sesamum stalk were seen in control.

Significant interaction between phosphorus and sulphur doses was observed on phosphorus content and uptake by sesamum stalk. Highest phosphorus content (0.33 per-cent) and uptake (73 mg pot⁻¹) by sesamum stalk was recorded in the treatmental combination of $P_{100}S_{30}$ which is on par with $P_{100}S_{20}$, $P_{75}S_{30}$ and $P_{75}S_{20}$.

Interaction impact of high P soils, phosphorus and sulphur on phosphorus concentration and uptake by sesamum stalk was found to be statistically significant. In Sunflower [1] phosphorus contents in plant parts were boosted in high native phosphorus status soils. Similar findings were also observed in soybeans [11]. They have also opined that significant enhancement in phosphorus content in both seed and stover might be due to increased root growth which in turn intensified roots foraging capacity and allowed them to absorb more of less mobile phosphorus. Phosphorus application in high P soils has elevated phosphorus uptake by sesamum [20] and [9]. The availability of more solution phosphorus in soils might have led to increased phosphorus content in plant parts in high P soils.

Effect of different levels of P and S on potassium content and uptake by sesamum seed

Potassium content and uptake by sesamum seed were not influenced by various doses of phosphorus in high inherent phosphorus status soils and was given in Table 10 and 11. The overall potassium content in sesamum seed was extended from 0.84 to 0.96 per cent with the average value of 0.91 per cent. Potassium uptake by sesamum seed increased significantly raised with phosphorus application from control (P₀) to 5 kg P₂O₅ha⁻¹ (P₂₅) while higher doses of phosphorus application had resulted in a non-significant increase. Potassium uptake by sesamum seed was ranged between 84 to 111 mg pot⁻¹ with a mean of 100 mg pot⁻¹.

Potassium content and uptake by sesamum seed were significantly increased with increasing sulphur levels from 10 to 30 kg S ha⁻¹. Significantly higher potassium content (0.97 per cent) and uptake (110 mg pot⁻¹) by sesamum seed was seen in S₃₀ (30 kg S ha⁻¹) treatment but at par with 20 kg S ha⁻¹. The interaction effect of phosphorus and sulphur on potassium content and uptake by sesamum seed was found to be statistically significant.

The treatment receiving $P_{100}S_{30}$ has attained the highest potassium content (1.03 per-cent) and uptake (124 mg pot⁻¹) by sesamum seed but on par with $P_{100}S_{20}$, $P_{75}S_{30}$ and $P_{75}S_{20}$. The interaction effect of phosphorus, sulphur, and two high P soils was found to be statistically significant on potassium content of sesamum seed.

Effect of different levels of P and S on potassium content and uptake by sesamum stalk

Application of phosphorus in various amounts had a nonsignificant influence on potassium content in sesamum stalk in high native available phosphorus status soils (Tables 12 and 13). Potassium uptake by the sesamum stalk was significantly increased from 278 to 309 mg pot⁻¹ as the phosphorus dose was enhanced from P₀ (control) to P₂₅ (5 kg P₂O₅ ha⁻¹) while at higher doses of phosphorus had a non-significant influence. Similarly, sulphur application also not significantly influence the potassium content in sesamum stalk. Application of S₁₀ (10 kg S ha⁻¹) sulphur recorded significantly higher potassium uptake by sesamum stalk (311 mg pot⁻¹) compared to control with 285 mg pot⁻¹ while at higher doses of sulphur there was the nonsignificant effect on potassium uptake by sesamum stalk.

Interaction between different levels of phosphorus and sulphur on potassium content in sesamum stalk was found to be statistically non-significant. Maximum potassium content (1.63 per cent) in sesamum stalk with combined application of P100S30 but on par with all other combinations in this study. The interaction effect has shown statistically significant results on potassium uptake by sesamum stalk. The highest potassium uptake (360 mg pot⁻¹) by sesamum stalk was obtained with combined application of P100S30. Positive enhancement in potassium uptake by sesamum with phosphorus application to the crop [2]. Increase in uptake of potassium by seed and stalk with sulphur might be due to differences in yield at various levels. Similar findings were also observed by [17] and [23].

Effect of different levels of P and S on sulphur content and uptake by sesamum seed

Application of phosphorus in various levels has significantly influenced the sulphur content and uptake by sesamum seed and is given in Tables 14 and 15. The highest sulphur content (0.40 per cent) and uptake (46

mg pot⁻¹) by sesamum seed was recorded in the treatment receiving P₁₀₀ (20 kg P₂O₅ ha⁻¹) but it was at par with P₇₅ treatment. Sulphur content and uptake by sesamum seed was significantly improved with increasing sulphur levels. Sulphur applied treatment S₃₀ (30 kg S ha⁻¹) has recorded significantly higher sulphur content (0.38 per cent) and uptake (43 mg pot⁻¹) by sesamum seed but on par with S₂₀ treatment while the lowest sulphur content and uptake was seen in control.

Application of varied levels of phosphorus and sulphur has shown a significant interaction effect on sulphur content and uptake by sesamum seed. Maximum sulphur content (0.43 per cent) and uptake (52 mg pot⁻¹) by sesamum seed was attained in the treatment receiving P100 S30 while it was on par with the treatments P100S20, P100S10, P75S30 and P75S20 respectively.

Interaction among phosphorus, sulphur, and soils selected was found to be statistically significant on sulphur content and uptake by sesame seed. Improvement in sulphur concentration with phosphorus application was also reported by [6] and [24] in sesamum. According to the above workers sulphur uptake was increased due to synergistic interaction between phosphorus and sulphur. Higher availability of sulphur at higher concentrations has resulted in rapid absorption due to its high mobility. It may also be attributed to desorption of sulphate from the exchange complex by phosphate ions, which increased the concentration of sulphate in the soil solution and made easy absorption of sulphur. Phosphorus and sulphur had shown the synergistic effect on these two elements at lower levels of application [8]. Similar trend was observed in high P soils.

Effect of different levels of P and S on sulphur content and uptake by sesamum stalk

Phosphorus applied in various doses has significantly influenced the sulphur content and uptake by sesamum stalk in high phosphorus status soils (Table 16 and 17). The highest sulphur content (0.18 per cent) and uptake (38 mg pot⁻¹) by sesamum stalk was recorded with the treatment receiving 20 kg P_2O_5 ha⁻¹ but on par with P_{75} .

Sulphur content and uptake by sesamum stalk was significantly increased as the sulphur dose was raised from 0 to 30 kg S ha⁻¹. Sulphur application @ 30 kg S ha⁻¹ has recorded significantly higher sulphur content (0.17 per cent) and uptake (37 mg pot⁻¹) by sesamum stalk but on par with S₂₀. Phosphorus and sulphur had shown statistically significant interaction on sulphur content and uptake by sesamum stalk. Highest sulphur content (0.20 per cent) and uptake (43 mg pot⁻¹) by sesamum stalk was recorded in P₁₀₀S₃₀ (20 kg P₂O₅ ha⁻¹ + 30 kg S ha⁻¹) but on par with P₁₀₀S₂₀, P₇₅S₃₀, P₇₅S₂₀ and P₅₀S₃₀.

Sulphur uptake in sesamum stalk has followed a similar trend as that of sulphur content. The increase in sulphate uptake may be attributed partially because of priming impact of nutrients. These results are corroborated with the findings of [3], [15] and [25] in non-high P soil, the present investigation with high P soil has also shown a similar trend.

CONCLUSION

In the above experiment, we can conclude that sesamum yield can be enhanced through combined application of phosphorus and sulphur. Synergistic effect of phosphorus and sulphur was seen on sesamum seed yield. The optimum doses of phosphorus and sulphur needed to obtain higher sesamum yields, nutrient content and uptake in high P soils was $P_{75}S_{20}$ (15 kg $P_{2}O_{5}$ ha⁻¹ + 20 kg S ha⁻¹) and $P_{50}S_{20}$ (10 kg $P_{2}O_{5}$ ha⁻¹ + 20 kg S ha⁻¹).

Future Scope of Study

The amount of phosphorus and sulphur required to increase sesamum yields in high phosphorus status soils has to be investigated at field level under various climatic conditions. It will enable in saving of phosphorus fertilizer in high phosphorus status soils (>150 kg P₂O₅ha⁻¹).

Acknowledgement

The authors acknowledge Professor Jayashankar Telangana Agricultural University formerly PJTSAU, Hyderabad, Telangana for providing financial assistance and facilities during the above study.

Table 2: Effect of different levels of P and S on nitrogen content (%) of sesamum seed in high P soils

				3	Factor Ta	ıbles					
		Soil 1(6'	7.29 kg P ₂ O ₅	ha ⁻¹)			Soil 2(8:	3.46 kg P ₂ O ₅	ha ⁻¹)		
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean
P ₀ (Control)	2.91	3.05	3.20	3.24	3.10	3.00	3.11	3.23	3.30	3.16	3.13
P ₂₅ (5 kg P ₂ O ₅ ha ⁻¹)	3.07	3.16	3.27	3.30	3.20	3.13	3.26	3.47	3.49	3.34	3.27
P ₅₀ (10 kg P ₂ O ₅ ha ⁻¹)	3.14	3.23	3.39	3.40	3.29	3.36	3.54	3.69	3.72	3.58	3.43
P75 (15 kg P2O5 ha ⁻¹)	3.35	3.54	3.70	3.72	3.58	3.47	3.70	3.86	3.87	3.73	3.65
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	3.41	3.58	3.74	3.76	3.62	3.52	3.72	3.90	3.92	3.77	3.69
Mean	3.18	3.31	3.46	3.48	3.36	3.30	3.47	3.63	3.66	3.51	3.44

						2 Fa	ctor Tab	les					
	S ₀	S10	S20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean
Po	2.96	3.08	3.22	3.27	3.13	Po	3.10	3.16	3.13	So	3.18	3.30	3.24
P ₂₅	3.10	3.21	3.37	3.40	3.27	P25	3.20	3.34	3.27	S10	3.31	3.47	3.39
P50	3.25	3.39	3.54	3.56	3.43	P50	3.29	3.58	3.43	S20	3.46	3.63	3.55
P75	3.41	3.62	3.78	3.80	3.65	P75	3.58	3.73	3.65	S ₃₀	3.48	3.66	3.57
P100	3.47	3.65	3.82	3.84	3.69	P100	3.62	3.77	3.69	Mean	3.36	3.51	3.44
Mean	3.24	3.39	3.55	3.57	3.44	Mean	3.36	3.51	3.44		S	Soil	S X Soil
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	0.063	0.054	0.081
SEm(±)	0.090	0.063	0.112			SEm(±)	0.090	0.054	0.094	CD (P=0.05)	0.14	0.12	0.18
CD (P=0.05)	0.20	0.14	0.25			CD (P=0.05)	0.20	0.12	0.21	Soil X P X S:SEm(±) : 0.126			CD (P=0.05): 0.28

						3	Factor Ta	bles						
			Soil	1(67.2	9 kg P2O5	ha ⁻¹)			Soil	2(83.46 kg P2	05 ha ⁻¹)			
P levels	(0	So Control)	S10 (10 kg ha ⁻¹)		S20 (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 k) ha ⁻¹	g S (20 kg	S (30	530 kg S a ⁻¹)	Mean	Grand Mean
P ₀ (Contro	I)	273	303		327	333	309	285	315	331	3	42	318	314
P25 (5 kg P2) ha ⁻¹)	05	312	334		350	356	338	313	350	375	3	82	355	347
P50 (10 kg P2 ha ⁻¹)	205	331	349		370	379	358	349	387	440	4	46	405	382
P75 (15 kg P2 ha ⁻¹)	205	356	388		440	444	407	365	413	462	4	65	426	416
P100 (20 kg P ha ⁻¹)	2 0 5	363	399		447	451	415	373	420	468	4	72	433	424
Mean		327	355		387	393	365	337	377	415	4	21	388	376
						21	Factor Ta	bles						
	So	S10	S20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2		Mean
Po	279	309	329	338	314	Po	309	318	314	So	327	337		332
P25	312	342	363	369	347	P ₂₅	338	355	347	S10	355	377		366
P50	340	368	405	413	382	P50	358	405	382	S20	387	415		401
P75	360	400	451	454	416	P75	407	426	416	S30	393	421		407
P100	368	410	458	462	424	P100	415	433	424	Mean	366	386		376
Mean	332	366	401	407	376	Mean	365	388	376		S	Soil		S X Soil
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	10.91	9.07		17.05
SEm(±)	11.71	10.91	20.10			SEm(±)	11.71	9.07	18.40	CD (P=0.05)	24.22	20.14		38.20
CD (P=0.05)	26.12	24.22	45.02			CD (P=0.05)	26.12	20.14	41.22	Soil X P X S:SEm(±): 22.84				(P=0.05): 51.16

Table 3. Effect of different levels of P and S on nitrogen uptake (mg pot $^{-1}$) by sesamum seed in high P soils

 $Table \, 4. \, {\it Effect} \, of \, different \, levels \, of \, P \, and \, S \, on \, nitrogen \, content \, (\%) \, of \, sesamum \, stalk \, in \, high \, P \, soils$

						3	Factor T	ables					
			So	il 1(67	.29 kg P2O	; ha ⁻¹)			Soil 2(8	3.46 kg P20	5 ha ⁻¹)		
P levels		So (Control)	S1 (10 ha	kg S	S20 (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	S₀ (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean
P₀ (Contro	l)	1.06	1.1	.6	1.26	1.28	1.19	1.10	1.20	1.29	1.37	1.24	1.21
P25 (5 kg P2 ha ⁻¹)	:05	1.13	1.2	21	1.33	1.35	1.25	1.14	1.25	1.40	1.42	1.30	1.28
P50 (10 kg P ha ⁻¹)	2 0 5	1.16	1.2	26	1.36	1.38	1.29	1.27	1.37	1.51	1.53	1.42	1.36
P75 (15 kg P ha ⁻¹)	2 0 5	1.29	1.3	89	1.51	1.53	1.43	1.41	1.49	1.54	1.59	1.51	1.47
P100 (20 k) P2O5 ha ⁻¹)	•	1.31	1.4	1	1.53	1.55	1.45	1.43	1.51	1.55	1.60	1.52	1.49
Mean		1.19	1.2	28	1.40	1.42	1.32	1.27	1.36	1.46	1.50	1.40	1.36
						2	Factor T	ables					
	6	6	C	6			Soil	Soil					

	So	S10	S ₂₀	S ₃₀	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean
Po	1.08	1.18	1.27	1.32	1.21	Po	1.19	1.24	1.21	So	1.19	1.27	1.23
P ₂₅	1.13	1.23	1.37	1.38	1.28	P25	1.25	1.30	1.28	S10	1.28	1.36	1.32
P50	1.22	1.31	1.44	1.46	1.36	P50	1.29	1.42	1.36	S ₂₀	1.40	1.46	1.43
P 75	1.35	1.44	1.52	1.56	1.47	P75	1.43	1.51	1.47	S ₃₀	1.42	1.50	1.46
P100	1.37	1.46	1.54	1.58	1.49	P100	1.45	1.52	1.49	Mean	1.32	1.40	1.36
Mean	1.23	1.32	1.43	1.46	1.36	Mean	1.32	1.40	1.36		S	Soil	S X Soil
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	0.041	0.032	0.045
SEm(±)	0.045	0.041	0.067			SEm(±)	0.045	0.032	0.049	CD (P=0.05)	0.09	0.07	0.10
CD (P=0.05)	0.10	0.09	0.15			CD (P=0.05)	0.10	0.07	0.11	1 Soil X P X S:SEm(±): 0.116			CD (P=0.05): 0.26

$Table \ 5. \ Effect \ of \ different \ levels \ of \ P \ and \ S \ on \ nitrogen \ up take \ (mg \ pot^{'}) \ by \ sesamum \ stalk \ in \ high \ P \ soils$

				3	Factor Ta	ıbles					
		Soil 1(6'	7.29 kg P ₂ O ₅	ha ⁻¹)			Soil 2(8:	3.46 kg P ₂ O ₅	ha ⁻¹)		
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean
Po (Control)	180	220	241	261	225	190	232	256	280	240	233
P25 (5 kg P2O5 ha ⁻¹)	224	244	276	280	256	228	258	295	305	272	264
P50 (10 kg P2O5 ha ⁻¹)	231	260	291	297	270	259	288	331	335	303	286
P75 (15 kg P2O5 ha ⁻¹)	261	298	331	338	307	289	322	339	352	325	316
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	268	307	337	342	313	296	334	342	354	331	322
Mean	233	266	295	303	274	252	287	313	325	294	284

						2	Factor Ta	ables					
	So	S10	S20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean
Po	185	226	249	270	233	Po	225	240	233	S ₀	233	252	243
P25	226	251	286	293	264	P ₂₅	256	272	264	S ₁₀	266	287	276
P50	245	274	311	316	286	P ₅₀	270	303	286	S 20	295	313	304
P75	275	310	335	345	316	P75	307	325	316	S 30	303	325	314
P100	282	320	339	348	322	P100	313	331	322	Mean	274	294	284
Mean	243	276	304	314	284	Mean	274	294	284		S	Soil	S X Soil
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	9.06	7.58	9.50
SEm(±)	10.11	9.06	10.41			SEm(±)	10.11	7.58	9.98	CD (P=0.05)	20.12	16.82	21.12
CD (P=0.05)	22.54	20.12	23.12			CD (P=0.05)	22.54	16.82	22.26	Soil X P X S:SEm(±): 11.71 CD (P=0.09) 26.12			CD (P=0.05): 26.12

 $Table \, 6. \, {\it Effect} \, of \, different \, levels \, of \, P \, and \, S \, on \, phosphorus \, content \, (\%) \, of \, sesamum \, seed \, in \, high \, P \, soils$

				3	Factor Ta	ables					
		Soil 1(6'	7.29 kg P ₂ O ₅	ha ⁻¹)			Soil 2(83	3.46 kg P ₂ O ₅	ha ⁻¹)		
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean
Po (Control)	0.16	0.22	0.28	0.29	0.24	0.20	0.27	0.32	0.33	0.28	0.25
P ₂₅ (5 kg P ₂ O ₅ ha ⁻¹)	0.30	0.33	0.37	0.40	0.35	0.32	0.35	0.39	0.41	0.37	0.36
P ₅₀ (10 kg P ₂ O ₅ ha ⁻¹)	0.35	0.39	0.42	0.43	0.40	0.41	0.43	0.47	0.48	0.45	0.42
P75 (15 kg P2O5 ha ⁻¹)	0.39	0.43	0.45	0.47	0.43	0.42	0.46	0.48	0.49	0.46	0.45
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	0.40	0.43	0.46	0.47	0.44	0.43	0.46	0.49	0.50	0.47	0.46
Mean	0.32	0.36	0.39	0.41	0.37	0.35	0.39	0.43	0.44	0.40	0.39

						21	Factor Ta	bles					
	So	S10	S ₂₀	S ₃₀	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean
Po	0.18	0.25	0.30	0.31	0.25	Po	0.24	0.28	0.25	So	0.32	0.35	0.34
P25	0.31	0.34	0.38	0.40	0.36	P25	0.35	0.37	0.36	S10	0.36	0.39	0.38
P50	0.38	0.41	0.44	0.45	0.42	P50	0.40	0.45	0.42	S20	0.39	0.43	0.41
P75	0.41	0.44	0.46	0.48	0.45	P75	0.43	0.46	0.45	S30	0.41	0.44	0.43
P100	0.42	0.45	0.47	0.49	0.46	P100	0.44	0.47	0.46	Mean	0.37	0.40	0.39
Mean	0.34	0.38	0.41	0.43	0.39	Mean	0.37	0.40	0.39		S	Soil	S X Soil
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	0.009	0.005	0.009
SEm(±)	0.009	0.009	0.013			SEm(±)	0.009	0.005	0.009	CD (P=0.05)	0.02	0.01	0.02
CD (P=0.05)	0.02	0.02	0.03			CD (P=0.05)	0.02	0.01	0.02	Soil X P X S:SEm(±): 0.01			CD (P=0.05):0.03

							3 Factor	Tables								
			S	oil 1(6	7.29 kg P ₂	0₅ ha-1)				Soi	il 2(83	8.46 kg I	P2O5 h	a-1)		
P levels		So (Contro)	n (10	510) kg S a ⁻¹)	S ₂₀ (20 kg ha ⁻¹)	S (30 kg S ha ⁻¹)	Mean	S (Con		S1 (10) ha	kg S	S20 (20 kg ha ⁻¹	g S	S ₃₀ (30 kg S ha ⁻¹)	Mean	Grand Mean
P ₀ (Contro	l)	13		22	29	30	23	1	7	2	8	33		35	28	26
P25 (5 kg P2 ha ⁻¹)	205	28		35	39	43	36	3	1	3	8	42		44	39	38
P ₅₀ (10 kg P ha ⁻¹)	205	37		43	44	48	43	4	2	4	7	56		58	51	47
P75 (15 kg P ha ⁻¹)	2 0 5	42		46	54	57	49	4	5	5	1	57	58		53	51
P ₁₀₀ (20 kg F ha ⁻¹)	P ₂ O ₅	43		49	55	57	51	4	6	5	2	59		60	54	53
Mean		33		39	44	47	41	3	6	4	3	49		51	45	43
							2 Factor	Tables								
	So	S10	S20	S30	Mean		Soil 1	Soil 2	Mea	n			Soil	1 Soil 2	2	Mean
Po	15	25	31	32	26	Po	23	28	26		9	50	33	36		34
P25	30	36	41	43	38	P ₂₅	36	39	38		S	10	39	43		41
P50	39	45	50	53	47	P50	43	51	46		S	20	44	49		46
P 75	43	48	55	57	51	P 75	49	53	51			30	47			49
P100	45	51	57	59	53	P100	51	54	53		М	ean	41			43
Mean	34	41	46	49	43	Mean	41	45	43				S	Soil		S X Soil
	Р	S	PXS				Р	Soil	P X So	oil		n (±)	1.35	5 0.91		1.84
SEm(±)	1.61	1.35	2.25			SEm(±)	1.61	0.91	2.23	3		CD 0.05)	3.00	2.02		4.12
CD (P=0.05)	3.58	3.00	5.04			CD (P=0.05)	3.58	2.02	5.00)					CD (I	P=0.05): 6.10

Table 7. Effect of different levels of P and S on phosphorus uptake (mg pot $^{-1}$) by sesamum seed in high P soils

 $Table\,8.\,Effect\,of\,different\,levels\,of\,P\,and\,S\,on\,phosphorus\,content\,(\%)\,of\,sesamum\,stalk\,in\,high\,P\,soils$

					3 Factor '	Fables					
		Soil 1(67	7.29 kg P2O5	ha-1)			Soil 2(83	8.46 kg P2O5	ha-1)		
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean
P ₀ (Control)	0.10	0.15	0.19	0.20	0.16	0.12	0.16	0.20	0.22	0.17	0.16
P25 (5 kg P2O5 ha ⁻¹)	0.18	0.21	0.23	0.24	0.21	0.16	0.21	0.25	0.28	0.22	0.22
P50 (10 kg P2O5 ha ⁻¹)	0.21	0.24	0.26	0.27	0.24	0.23	0.27	0.30	0.31	0.28	0.26
P75 (15 kg P2O5 ha ⁻¹)	0.24	0.29	0.30	0.31	0.28	0.26	0.30	0.32	0.33	0.30	0.29
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	0.25	0.30	0.31	0.32	0.29	0.27	0.31	0.33	0.34	0.32	0.31
Mean	0.19	0.23	0.26	0.27	0.24	0.21	0.25	0.28	0.29	0.26	0.25

	2 Factor Tables													
	So	S10	S20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean	
Po	0.11	0.15	0.19	0.21	0.16	Po	0.16	0.17	0.16	S ₀	0.19	0.21	0.20	
P25	0.17	0.21	0.24	0.26	0.22	P25	0.21	0.22	0.22	S10	0.23	0.25	0.24	
P50	0.23	0.25	0.28	0.29	0.26	P50	0.24	0.28	0.26	S ₂₀	0.26	0.28	0.27	
P 75	0.26	0.29	0.31	0.32	0.29	P75	0.28	0.30	0.29	S ₃₀	0.27	0.29	0.28	
P100	0.27	0.31	0.32	0.33	0.31	P100	0.29	0.32	0.31	Mean	0.24	0.26	0.25	
Mean	0.20	0.24	0.27	0.28	0.25	Mean	0.24	0.26	0.25		S	Soil	S X Soil	
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	0.004	0.004	0.008	
SEm(±)	0.009	0.005	0.013			SEm(±)	0.009	0.004	0.013	CD (P=0.05)	0.01	0.01	0.02	
CD (P=0.05)	0.02	0.01	0.03			CD (P=0.05)	0.02	0.01	0.03	Soil X P X S:SEm(±): 0.017 CD (P=0.05) 0.04			CD (P=0.05): 0.04	

Table 9. Effect of different levels of P and S on phosphorus uptake (mg pot¹) by sesamum stalk in high P soils

3 Factor Tables														
		Soil 1(6	7.29 kg P ₂ O ₅	ha ⁻¹)			Soil 2(83	3.46 kg P 2 O 5	ha ⁻¹)					
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean			
P ₀ (Control)	16	27	36	40	30	20	30	39	44	33	32			
P25 (5 kg P2O5 ha ⁻¹)	36	41	48	49	43	31	43	52	59	46	45			
P50 (10 kg P2O5 ha ⁻¹)	42	49	56	58	51	47	57	65	68	60	55			
P75 (15 kg P2O5 ha ⁻¹)	49	62	66	68	61	53	64	70	72	65	63			
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	50	65	69	71	64	56	67	73	75	68	66			
Mean	39	49	55	57	50	42	52	60	64	54	52			

	2 Factor Tables														
	S ₀	S10	S 20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean		
Po	18	29	37	42	32	Po	30	33	32	S ₀	39	42	40		
P25	33	42	50	54	45	P25	43	46	45	S10	49	52	50		
P50	46	53	61	63	55	P50	51	60	55	S20	55	60	57		
P75	52	63	68	70	63	P75	61	65	63	S30	57	64	60		
P100	54	67	71	73	66	P100	64	68	66	Mean	50	54	52		
Mean	40	50	57	60	52	Mean	50	54	52		S	Soil	S X Soil		
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	1.79	1.35	2.18		
SEm(±)	2.18	1.79	3.16			SEm(±)	2.18	1.35	2.76	CD (P=0.05)	4.00	3.52	4.84		
CD (P=0.05)	4.86	4.00	7.12			CD (P=0.05)	4.86	3.52	6.22	Soil X P X S:SEm(±): 3.39		CD (P=0.05): 7.53			

 $Table\,10.\,Effect\,of\,different\,levels\,of\,P\,and\,S\,on\,potassium\,content\,(\%)\,of\,sesamum\,seed\,in\,high\,P\,soils$

3 Factor Tables													
		Soil 1(67	29 kg P205	ha ⁻¹)			Soil 2(83	3.46 kg P 2 O 5	ha ⁻¹)				
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)	S ₁₀ (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	Grand Mean		
P ₀ (Control)	0.75	0.82	0.86	0.88	0.83	0.78	0.83	0.88	0.90	0.85	0.84		
P25 (5 kg P2O5 ha ⁻¹)	0.83	0.87	0.90	0.93	0.88	0.81	0.88	0.93	0.96	0.89	0.89		
P50 (10 kg P2O5 ha ⁻¹)	0.85	0.89	0.93	0.95	0.90	0.82	0.90	0.98	0.99	0.92	0.91		
P75 (15 kg P2O5 ha ⁻¹)	0.88	0.93	0.96	0.98	0.94	0.84	0.93	1.01	1.03	0.95	0.94		
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	0.88	0.94	0.99	1.02	0.95	0.87	0.95	1.03	1.05	0.97	0.96		
Mean	0.84	0.89	0.93	0.95	0.90	0.82	0.89	0.97	0.99	0.92	0.91		

	2 Factor Tables														
	So	S10	S ₂₀	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean		
Po	0.76	0.82	0.87	0.89	0.84	Po	0.83	0.85	0.84	S ₀	0.84	0.82	0.83		
P25	0.82	0.87	0.92	0.95	0.89	P25	0.88	0.89	0.89	S10	0.89	0.89	0.89		
P50	0.84	0.90	0.96	0.97	0.91	P50	0.90	0.92	0.91	S20	0.93	0.97	0.95		
P 75	0.86	0.93	0.98	1.00	0.94	P75	0.94	0.95	0.94	S30	0.95	0.99	0.97		
P100	0.87	0.94	1.01	1.03	0.96	P100	0.95	0.97	0.96	Mean	0.90	0.92	0.91		
Mean	0.83	0.89	0.95	0.97	0.91	Mean	0.90	0.92	0.91		S	Soil	S X Soil		
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	0.036	0.031	0.054		
SEm(±)	0.051	0.036	0.045			SEm(±)	0.051	0.031	0.068	CD (P=0.05)	0.08	NS	NS		
CD (P=0.05)	NS	0.08	0.10			CD (P=0.05)	NS	NS	NS	Soil X P X S: SEm(±): 0.076			CD (P=0.05): 0.17		

3 Factor Tables														
		Soil 1(67	7.29 kg P2O5	ha-1)			Soil 2(83	8.46 kg P2O5	ha ⁻¹)					
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean			
P ₀ (Control)	70	81	87	90	82	74	84	91	94	85	84			
P ₂₅ (5 kg P ₂ O ₅ ha ⁻¹)	84	91	96	101	93	81	94	101	106	95	94			
P50 (10 kg P2O5 ha ⁻¹)	90	96	102	105	98	85	99	117	118	105	101			
P75 (15 kg P2O5 ha ⁻¹)	93	101	115	117	106	89	104	120	124	109	108			
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	93	105	118	122	109	92	107	124	127	112	111			
Mean	86	95	104	107	98	84	97	110	113	101	100			

Table 11. Effect of different levels of P and S on potassium uptake (mg pot¹) by sesamum seed in high P soils

	2 Factor Tables														
	So	S10	S 20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean		
Po	72	83	89	92	84	Po	82	85	84	So	86	84	85		
P25	82	93	99	103	94	P25	93	95	94	S10	95	97	96		
P50	87	97	109	112	101	P50	98	105	101	S20	104	110	107		
P75	91	103	118	120	108	P75	106	109	108	S ₃₀	107	113	110		
P100	92	106	121	124	111	P100	109	112	111	Mean	98	101	100		
Mean	85	96	107	110	100	Mean	98	101	100		S	Soil	S X Soil		
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	3.21	3.58	3.64		
SEm(±)	3.70	3.21	4.58			SEm(±)	3.70	3.58	4.34	CD (P=0.05)	7.12	NS	8.12		
CD (P=0.05)	8.24	7.12	10.26			CD (P=0.05)	8.24	NS	9.61	Soil X P X S:SEm(±): 4.45 CD (CD (P=0.05): 9.88		

 $Table\,12.\,Effect\,of\,different\,levels\,of\,P\,and\,S\,on\,potassium\,content\,(\%)\,of\,sesamum\,stalk\,in\,high\,P\,soils$

3 Factor Tables														
		Soil 1(67	7.29 kg P ₂ O ₅	ha ⁻¹)			Soil 2(83	3.46 kg P2O5	ha-1)					
P levels	So (Control)	S ₁₀ (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)	S ₁₀ (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	Grand Mean			
P ₀ (Control)	1.39	1.43	1.48	1.50	1.45	1.41	1.44	1.47	1.51	1.46	1.45			
P25 (5 kg P2O5 ha ⁻¹)	1.43	1.49	1.51	1.53	1.49	1.44	1.49	1.54	1.56	1.51	1.50			
P ₅₀ (10 kg P ₂ O ₅ ha ⁻¹)	1.44	1.51	1.55	1.57	1.52	1.46	1.50	1.58	1.59	1.53	1.52			
P75 (15 kg P2O5 ha ⁻¹)	1.47	1.52	1.58	1.61	1.54	1.48	1.52	1.60	1.61	1.55	1.55			
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	1.47	1.54	1.61	1.62	1.56	1.50	1.54	1.62	1.64	1.57	1.57			
Mean	1.44	1.50	1.54	1.56	1.51	1.46	1.50	1.56	1.58	1.53	1.52			

	2 Factor Tables														
	S ₀	S10	S 20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean		
Po	1.40	1.44	1.47	1.51	1.45	Po	1.45	1.46	1.45	S ₀	1.44	1.46	1.45		
P25	1.44	1.49	1.53	1.55	1.50	P25	1.49	1.51	1.50	S10	1.50	1.50	1.50		
P50	1.45	1.50	1.56	1.58	1.52	P50	1.52	1.53	1.52	S ₂₀	1.54	1.56	1.55		
P75	1.48	1.52	1.59	1.61	1.55	P75	1.54	1.55	1.55	S30	1.56	1.58	1.57		
P100	1.49	1.54	1.61	1.63	1.57	P100	1.56	1.57	1.57	Mean	1.51	1.53	1.52		
Mean	1.45	1.50	1.55	1.57	1.52	Mean	1.51	1.53	1.52		S	Soil	S X Soil		
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	0.08	0.07	0.11		
SEm(±)	0.09	0.08	0.14			SEm(±)	0.09	0.07	0.13	CD (P=0.05)	NS	NS	NS		
CD (P=0.05)	NS	NS	NS			CD (P=0.05)	NS	NS	NS	Soil X P X S:SEm(±): 0.15			CD (P=0.05): NS		

	3 Factor Tables														
		Soil 1(67	7.29 kg P2O5	ha ⁻¹)			Soil 2(83	3.46 kg P2O5	ha ⁻¹)						
P levels	So (Control)	S ₁₀ (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	Grand Mean				
P ₀ (Control)	237	272	284	306	275	244	279	291	309	281	278				
P25 (5 kg P2O5 ha ⁻¹)	285	299	314	319	304	288	306	325	336	314	309				
P50 (10 kg P2O5 ha ⁻¹)	287	311	331	337	316	297	316	345	349	326	321				
P75 (15 kg P2O5 ha ⁻¹)	297	327	348	354	331	304	328	352	356	335	333				
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	301	335	353	357	336	311	336	357	362	341	339				
Mean	281	309	326	335	313	289	313	334	342	319	316				

Table 13. Effect of different levels of P and S on potassium uptake (mg pot 1) by sesame	um stalk in high P soils
--	--------------------------

	2 Factor Tables														
	S ₀	S10	S20	S ₃₀	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean		
Po	240	276	287	307	278	Po	275	281	278	So	281	289	285		
P25	287	303	320	328	309	P25	304	314	309	S10	309	313	311		
P50	292	313	338	343	321	P50	316	326	321	S20	326	334	330		
P75	300	328	350	355	333	P75	331	335	333	S ₃₀	335	342	338		
P100	306	335	355	360	339	P100	336	341	339	Mean	313	319	316		
Mean	285	311	330	338	316	Mean	313	319	316		S	Soil	S X Soil		
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	9.12	9.24	9.57		
SEm(±)	9.92	9.12	17.92			SEm(±)	9.92	9.24	10.57	CD (P=0.05)	20.24	NS	21.16		
CD (P=0.05)	22.12	20.24	40.14			CD (P=0.05)	22.12	NS	23.47	Soil X P X S:SEm(±): 16.09			CD (P=0.05): 35.56		

$Table\,14.\,Effect\,of\,different\,levels\,of\,P\,and\,S\,on\,sulphur\,content\,(\%)\,of\,sesamum\,seed\,in\,high\,P\,soils$

					3 Factor	Tables								
		Soil 1(67	7.29 kg P2O5	ha ⁻¹)			Soil 2(83.46 kg P ₂ O ₅ ha ⁻¹)							
P levels	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)	S ₁₀ (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean			
P ₀ (Control)	0.25	0.29	0.30	0.31	0.29	0.26	0.29	0.31	0.33	0.30	0.29			
P25 (5 kg P2O5 ha ⁻¹)	0.29	0.30	0.32	0.33	0.31	0.30	0.32	0.35	0.36	0.33	0.32			
P ₅₀ (10 kg P ₂ O ₅ ha ⁻¹)	0.31	0.34	0.36	0.37	0.34	0.32	0.35	0.41	0.42	0.38	0.36			
P75 (15 kg P2O5 ha ⁻¹)	0.33	0.36	0.39	0.40	0.37	0.37	0.39	0.42	0.43	0.40	0.39			
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	0.34	0.37	0.40	0.41	0.38	0.38	0.42	0.44	0.45	0.42	0.40			
Mean	0.30	0.33	0.35	0.36	0.34	0.32	0.35	0.39	0.40	0.37	0.35			

						2 I	Factor Ta	bles					
	So	S10	S20	S30	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean
Po	0.25	0.29	0.30	0.32	0.29	Po	0.29	0.30	0.29	S ₀	0.30	0.32	0.31
P25	0.29	0.31	0.34	0.34	0.32	P25	0.31	0.33	0.32	S10	0.33	0.35	0.34
P50	0.31	0.35	0.38	0.39	0.36	P50	0.34	0.38	0.36	S ₂₀	0.35	0.39	0.37
P 75	0.35	0.37	0.40	0.41	0.39	P75	0.37	0.40	0.39	S30	0.36	0.40	0.38
P100	0.36	0.40	0.42	0.43	0.40	P100	0.38	0.42	0.40	Mean	0.34	0.37	0.35
Mean	0.31	0.34	0.37	0.38	0.35	Mean	0.34	0.37	0.35		S	Soil	S X Soil
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	0.005	0.004	0.008
SEm(±)	0.009	0.005	0.014			SEm(±)	0.009	0.004	0.013	CD (P=0.05)	0.01	0.01	0.02
CD (P=0.05)	0.02	0.01	0.03			CD (P=0.05)	0.02	0.01	0.03	Soil X P X S:SEm(±): 0.08 CD (P=0.0) 0.16			

Table 15. Effect of different levels of P and S on sulphur uptake (mg pot¹) by sesamum seed in high P soils

					3 Factor	Tables					
		Soil 1(67	7.29 kg P2O5	ha ⁻¹)							
P levels	S0 S10 (Control) (10 kg S) ha ⁻¹)		S20 (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)	S10 (10 kg S ha ⁻¹)	S ₂₀ (20 kg S ha ⁻¹)	S30 (30 kg S ha ⁻¹)	Mean	Grand Mean
P ₀ (Control)	23	29	30	32	29	24	29	32	34	30	29
P25 (5 kg P 2O5 ha ⁻¹)	29	32	35	35	33	30	34	38	39	35	34
P50 (10 kg P2O5 ha ⁻¹)	32	37	39	41	37	33	38	49	50	43	40
P75 (15 kg P2O5 ha ⁻¹)	35	39	46	48	42	39	43	50	52	46	44
P ₁₀₀ (20 kg P ₂ O ₅ ha ⁻¹)	36	41	48	50	44	40	47	53	54	49	46
Mean	31	36	40	41	37	33	38	44	46	40	39

							2 Factor	Tables						
	S ₀	S10	S ₂₀	S ₃₀	Mean		Soil 1	Soil 2	Mean		Soil 1	Soil 2	Mean	
Po	24	29	31	33	29	Po	29	30	29	S ₀	31	33	32	
P25	29	33	36	37	34	P25	33	35	34	S10	36	38	37	
P50	33	38	44	46	40	P50	37	43	40	S20	40	44	42	
P75	37	41	48	50	44	P75	42	46	44	S ₃₀	41	46	43	
P100	38	44	50	52	46	P100	44	49	46	Mean	37	40	39	
Mean	32	37	42	43	39	Mean	37	40	39		S	Soil	S X Soil	
	Р	S	P X S				Р	Soil	P X Soil	SEm(±)	1.34	1.25	2.38	
SEm(±)	1.45	1.34	1.89			SEm(±)	1.45	1.25	2.30	CD (P=0.05)	3.00	2.77	5.33	
CD (P=0.05)	3.24	3.00	4.23			CD (P=0.05)	3.24	2.77	5.15	Soil X P X S:SEm(±): 5.63 CD (P=0.05) 12.55				

Table 16. Effect of different levels of P and S on sulphur content (%) of sesamum stalk in high P soils

							3 Facto	or Tab	oles					
			Soil 1	(67.29)	kg P2O5 h	1a ⁻¹)				Soil 2(83	3.46 kg P 2 O 5	ha ⁻¹)		
P levels		So Control)	S10 (10 kg S ha ⁻¹)	g (2	S20) kg S 1a ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	So (Control)		S10 (10 kg S ha ⁻¹)	S20 (20 kg S ha ⁻¹)	S ₃₀ (30 kg S ha ⁻¹)	Mean	Grand Mean
P ₀ (Control) 0.0		0.05	0.09	().11	0.13	0.10	(0.09	0.11	0.13	0.14	0.12	0.11
P ₂₅ (5 kg P ha ⁻¹)	P ₂ O ₅ 0.10 0.11		(0.13 0.14		0.12	(0.11	0.14	0.16	0.18	0.14	0.13	
P50 (10 kg F ha ⁻¹)	¹ 50 (10 kg P ₂ O ₅ ha ⁻¹) 0.11		0.13	().16	0.17	0.14	(0.13	0.16	0.18	0.19	0.16	0.15
P75 (15 kg F ha ⁻¹)	75 (15 kg P ₂ O ₅ ha ⁻¹) 0.12		0.16	().17	0.18	0.16	(0.14	0.17	0.19	0.20	0.17	0.17
P100 (20 k P2O5 ha ⁻¹		0.15	0.17	().18	0.19	0.19 0.17		0.15	0.17	0.20	0.21	0.18	0.18
Mean 0.11		0.11	0.13	().15	0.16	0.14	(0.12	0.15	0.17	0.18	0.16	0.15
							2 Facto	or Tab	oles					
	So	S10	S20	S ₃₀	Mean		So 1	oil	Soil 2	Mean		Soil 1	Soil 2	Mean
Po	0.07	0.11	0.13	0.14	0.11	Po	0.1	10	0.12	0.11	So	0.11	0.12	0.11
P ₂₅	0.10	0.13	0.14	0.16	0.13	P25	0.1	12	0.14	0.13	S10	0.13	0.15	0.14
P50	0.12	0.14	0.17	0.18	0.15	P50	0.1	14	0.16	0.15	S20	0.15	0.17	0.16
P 75	0.13	0.16	0.18	0.19	0.17	P 75	0.1	16	0.17	0.17	S30	0.16	0.19	0.17
P100	0.15	0.17	0.19	0.20	0.18	P100	0.1	17	0.18	0.18	Mean	0.14	0.16	0.15
Mean	0.11	0.14	0.16	0.17	0.15	Mean	0.1	14	0.16	0.15		S	Soil	S X Soil
	Р	S	PXS				F	2	Soil	P X Soil	SEm(±)	0.004	0.004	0.008
SEm(±)	0.005	0.004	0.009			SEm(±)	0.0	05	0.004	0.008	CD (P=0.05)	0.01	0.01	0.02
CD (P=0.05)	0.01	0.01	0.02			CD (P=0.05) 0.0	01	0.01	0.02	Soil X P 2	K S:SEm(±):	0.014	CD (P=0.05) : 0.03

							3 Factor 1	Fables									
				Soil 1(6	7.29 kg P	2 0 5 ha ⁻¹)				So	il 2(83	8.46 kg P	205 ha	a ⁻¹)			
P levels	1	S₀ (Control)		S10 10 kg S ha ⁻¹)	S20 (20 kg ha ⁻¹)		Mean	S (Con		S: (10 ha	-	S20 (20 kg ha ⁻¹)		S30 (30 kg S ha ⁻¹)	ым	ean	Grand Mean
P₀ (Contro	ol)	9		18	21	27	19	1	5	2	1	26		29		23	21
P ₂₅ (5 kg P ₂ C ¹))₅ ha ⁻	20 21		21	26	29	24	2	1	29		33		38		30	27
P50 (10 kg P ha ⁻¹)	P ₂ O ₅	21		27	34	37	29	2	6	3	3	38		41		34	32
P75 (15 kg P ha ⁻¹)		25		34	38	40	34	2	8	3	6	41		45		37	36
P ₁₀₀ (20 kg l ha ⁻¹)	P2 O 5	31		37	40	41	37	3	1	3	7	43		46		39	38
Mean		21		27	32	35	29	2	4	3	1	36		40		33	31
							2 Factor 1	Гables									
	S ₀	S10	S20	S30	Mean		Soil 1	Soil 2	Mea	an			Soil	1 S	oil 2		Mean
Po	12	20	24	28	21	Po	19	23	21			So	21		24		23
P ₂₅	20	25	30	33	27	P25	24	30	27	7	5	510	27		31		29
P50	24	30	36	39	32	P50	29	34	32	2	9	520	32		36		34
P 75	27	35	39	42	36	P 75	34	37	36		9	3 30	35		40		37
P100	31	37	42	43	38	P100	37	39	38		Μ	ean	29		33		31
Mean	23	29	34	37	31	Mean	29	33	31				S		oil		S X Soil
	Р	S	P X S				Р	Soil	P X S	oil		n (±)	0.7	9 0	.56		1.12
SEm(±)	0.89	0.79	1.78			SEm(±)	0.89	0.56	1.2	6		CD 0.05)	3.1	7 2	.93		5.27
CD (P=0.05)	3.21	3.17	4.34			CD (P=0.05)	3.21	2.93	5.1	1	Soil X P X S:SEm(±): 2.92					O (P=0.05): 6.52	

Table 17. Effect of different levels of P and S on sulphur uptake (mg pot¹) by sesamum stalk in high P soils

REFERENCES

- 1. Babu, S.P., Reddy. V and Sathe, S.A. 2005. Phosphorus requirement and use efficiency by sunflower (*Helianthus annus* L.) in P- accumulated Vertisols. *Journal of Oilseeds Research*. 22 (2):410-413.
- 2. Basavaraj, B., Shetty, R.A., Patil, S.G. and Hunshal, C.S. 2000. Nutrient content and uptake by sesame varieties as influenced by fertilizer and population levels under summer irrigated conditions. *Karnataka Journal of Agricultural Sciences*. 13(1): 141-143.
- 3. Bhainru, S., Patel, B.T. and Yadav, B.L., 2015. Nutrient content, uptake and fertility influenced by sources and levels of sulphur in *kharif* sesame (*Sesamum indicum* L.). *International Journal of Agricultural Sciences*. 11(1): 146-150.
- 4. Bharose, R., Chandra, S., Thomas, T. and Dhan, D. 2011. Effect of different levels of phosphorus and sulphur on yield and availability of NPK, protein and oil content in Toria (*Brassica sp.*) Var. PT-303. Journal of Agricultural and Biological Science. 6(2): 31-33.
- 5. Birade, G. R. (2019). Effect of fertilizer and sulphur levels on growth, yield and quality of kharif sesame (Sesamum indicum L.). M. Sc (Ag) thesis. Mahatma Phule Krishi Vidyapeeth, Maharshtra.

- 6. Chaplot, P.C., Jain, G.L. and Bansal, K.N. 1991. Effect of phosphorus and sulphur on the oil yield and uptake of N, P and S in sesame. *International Journal of Tropical Agriculture*. 9 (3): 190-193.
- 7. Chaudhary, S.K and Thakur, R.B. 2007. Rational use of phosphorus in a rice-wheat cropping system in Bihar plains. *Oryza*. 44 (3): 282-284.
- 8. Dhage, S.J., Patil, V.D. and Dhamak, A.L. 2014. Influence of phosphorus and sulphur levels on nodulation, growth parameters and yield of soybean (*Glycine max* L.) grown on *vertisol. Asian Journal of Soil Science*. 9(2): 244-249.
- Jat, M.K., Yadav, P.K., Singh, R., Tikkoo, A. and Dadarwal, R.S. 2020. Response of phosphorus in sesame (*Sesamum indicum* L.) on coarse textured soils of South West Haryana. *Journal of Pharmacognosy and Phytochemistry*. 9(1): 2098-2101.
- Kalaiyarasan, C., Gandhi, G., Vaiyapuri, V., Sriramachandrasekharan, M.V., Jawahar, S., Suseendran, K., Ramesh, S., Elankavi, S. and Kanagaraj, R. 2019. Yield, quality, nutrient uptake and post-harvest nutrient status of Sunflower genotypes to sulphur fertilization grown under Veeranam Ayacut Regions. *Plant Archives*. 19(2): 2358-2362.

- 11. Kumar, S., Meena, R., Yadav, G. and Pandey, A. 2017. Response of sesame (*Sesamum indicum* L.) to sulphur and lime application under soil acidity. *International Journal of Plant & Soil Science*. 14(4): 1-9.
- 12. Madhavi, A., Babu, P.S. and Reddy, P.V., 2015. Requirement of phosphorus and its use efficiency by sunflower in high phosphorus soils. *Journal of Progressive Agriculture.* 6(1): 27-30.
- 13. Majumdar, B., Venkatesh, M.S., Lal, B. and Kumar, K. 2001. Response of soybean to phosphorus and sulphur in acid alfisol of Meghalaya. *Indian Journal of Agronomy*. 46(3): 500-505.
- Mehmood, M.Z., Afzal, O., Ahmed, M., Qadir, G., Kheir, A.M., Aslam, M.A., Din, A.M.U., Khan, I., Hassan, M.J., Meraj, T.A. and Raza, M.A. 2021. Can sulphur improve the nutrient uptake, partitioning, and seed yield of sesame. *Arabian Journal of Geosciences*. 14(10):865.
- 15. Mondal, S. 2016. Efficiency of Sulphur source on sesame (Sesamum indicum L.) in red and lateritic soil of West Bengal. International Journal of Plant Animal and Envrionment Sciences. 6: 65-70.
- 16. Panse, V. G and Sukhatme P. V. 1985. Statistical Methods for Agricultural workers. Indian Council of Agricultural Research, New Delhi.
- 17. Parakhia, D.V., Parmar, K.B., Vekaria, L.C. and Sisodiya, R.R. 2018. Effect of various Sulphur levels on concentration and uptake of nitrogen, phosphorus and potash of soybean (*Glycine max* L.) varieties. *International Journal of Chemical Studies*. 6(3): 2962-2966.
- 18. Ramya, V.S., Madhavi, A., Babu, P.S and Madhavi, K. 2015. Zinc requirement to rice in high P soil with sufficient zinc status. *The Journal of Research PJTSAU*. 43(3): 33-35.

- 19. Sawant, V.B., Sonani, V.V., Raskar, S.S. and Patil, P.A. 2013. Effects of different levels of nitrogen, phosphorus and sulphur on yield and yield attributes of summer sesame (*Sesamum indicum* L.). *International Journal of current Research*. 5(10): 2744-2745.
- 20. Shehu, H.E., Kwari, J.D. and Sandabe, M.K. 2010. Effects of N, P and K fertilizers on yield, content and uptake of N, P and K by sesame (*Sesamum indicum*). *International Journal of Agriculture and Biology*, *12*(6): 845-850.
- 21. Sheoran, P., Sardana, V., Singh, S., Sheoran, O.P. and Raj, D. 2013. Optimizing sulphur application in sunflower (*Helianthus annuus*) under irrigated semi-arid tropical conditions. *Indian Journal of Agronomy*. 58(3): 384-390.
- 22. Srinivas, A., Surendra Babu, P., Madhavi, A., Vidyasagar, G.E.C.H and Maruthi Sankar, G.R. 2016. Effect of phosphorus application on uptake, yield and fertilizer use efficiency under rice-rice and rice-sunflower systems in high P soils. *Agropedology*. 26 (02): 132-148.
- 23. Vilakar.K. 2021. Standardisation of fertilizer doses for summer sesamum in northern telangana zone. M. Sc. thesis. PJTSAU, Hyd, Telangana.
- 24. Vora, V.D., Hirpara, D.S., Vekaria, P.D., Sutaria, G.S. and Vala, F.G. 2018. Effect of phosphorus management on yield, nutrient uptake by sesame and post-harvest soil fertility under rainfed condition. *Journal of Pharmacognosy and Phytochemistry*. 7(5): 65-69.
- 25. Yadav, K.C. 2018. Effect of different levels of sulphur and its sources on sesame (*Sesamum indicum* L.) in sandy soils of Western Rajasthan. *M. Sc (Ag) thesis*. Swami Keshwanand Rajasthan Agricultural University. Rajasthan.