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	ABSTRACT	
Wheat	production	is	affected	by	emerging	problems	like	climate	change,	terminal	heat	stress,	and	over-utilization	of	resources.	To	
obtain	consistent	yield,	variety	should	be	adaptable	and	stable	in	various	production	conditions.	The	ideal	time	of	sowing	of	wheat	is	
before	15	Nov	in	Indian	sub	contientent	as	delay	in	sowing	will	effect	the	yield	because	of	terminal	heat	stress	so	to	tackle	this	problem	
more	adaptable	and	late	sown	varities	should	be	identi�ied	so	by	the	present	study	will	able	to	identify	which	genotypes	are	highly	
adaptable	in	late	sown	condition.	The	experiment	was	carried	out	at	B.A.U,	Ranchi	2019-20	with	three	dates	of	sowing	i.e.	timely	
sowing	(E1),	late	sowing	(E2),	very	late	sowing	(E3)	using	twenty-eight	genotypes	including	advanced	breeding	lines,	local	land	
races	 and	 released	 varieties,	 grown	 in	 RBD	 with	 two	 replications.	 The	 AMMI	 analysis	 of	 variance	 revealed	 that	 genotype,	
environment,	and	their	interaction	had	a	highly	signi�icant	effect	on	the	yield	and	yield-attributing	traits.	The	Additive	Main	Effects	
and	Multiplicative	Interaction	(AMMI)	analysis	of	variance	for	grain	yield	per	plant	across	the	environments	showed	that	65.49	%	of	
the	total	variation	was	attributed	to	genotypic	effects,	11.07%	to	environmental	effects	and	23.42%	to	genotype-environment	
interaction	effects.	The	genotypes	which	has	stable	yield	in	all	the	three	environment	timely,	late	and	very	late	are	DBW-273,	UP-
2981,	 RAJ-4529,	 HI-1621,	 DBW-252,	 WR-544,	 DBW-14,	 WH-1235,	 PBW-773.	 AMMI	 models	 revealed	 stable	 and	 high-yielding	
genotypes	suitable	for	speci�ic	environments,	thus	DBW-136,	DBW-14,	DBW-252,	WR-544	for	Environment	1,	DBW-273,	UP-2981	for	
Environment	2,	RAJ-4529,	HI-1621	for	Environment	3.	Overall	environment	E1	followed	by	E2	and	E3	were	suitable	for	most	of	the	
traits.	These	genotypes	could	be	utilized	in	breeding	programs	to	improve	grain	yield	in	bread	wheat	and	may	be	used	as	stable	
breeding	material	for	commercial	cultivation.
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1.	Introduction
Wheat is a key staple food crop in many countries around the 
world, including India, where it plays a crucial role in both 
nutrition and food security. Moreover, it is an important 
industrial crop, as the grain, along with the stalk and chaff, is 
used as raw material in various industries and serves purposes 
such as mulch, construction material, and animal bedding. It has 
a strong nutritional pro�ile, consisting of 12.1% protein, 1.8% 
lipids, 1.8% ash, 2.0% reducing sugars, 6.7% pentosans, 59.2% 
starch, and 70% total carbohydrates, offering 314 Kcal per 100 
grams of food (31) . Wheat is grown mainly in two seasons in the 
world viz. winter and spring. Winter wheat is grown in cold 
countries like Europe, U.S.A., Australia, the Russian federation 
etc. While spring wheat is grown in Asia and apart of U.S.A. 
spring wheat matures in 120-130 days while winter wheat takes 
240-300 days for maturity. Due to this reason productivity of 
winter wheat is higher in comparison to spring wheat . There are 
several challenges in wheat breeding, with droughts and high 
temperatures being the most signi�icant factors that limit crop 
production globally (3) . 

Yield instability in wheat under heat and moisture stress can 
result from accelerated developmental phases, increased 
respiration (32) , reduced photosynthesis (33), and inhibited 
starch synthesis in developing kernels, all of which impact both 
grain setting and grain �illing. Given the impending negative 
impacts of climate change on crop productivity, it is crucial to 
develop wheat genotypes with high resilience that can adapt to 
varying environmental  conditions,  ensuring higher 
productivity and more stable yields in the face of climate shifts.
To develop stable varieties, it's essential to have signi�icant 
genetic diversity within the populations being studied. By 
analyzing these populations, genotypes that exhibit broad 
stability across various environmental conditions can be 
identi�ied. This is achieved by understanding the interaction 
between genotype and environment. The presence of Genotype 
× Environment interaction in any genetical study simply leads to 
over estimation of genetical and statistical parameters. Thus, it 
vitiates the estimation of variance and co-variance and related 
statistics, heritability, selection differential, degree of 
dominance, genetic advance, and response to selection, variance 
components, divergence analysis and so forth. The phenotypic 
(P) value measured on a suitable scale is not equal to the 
genotypic value(G) when the genotype is grown in more than 
one environment(E) therefore, P= G + E + (G×E). Genotype × 
environment (G×E) interaction decreases the effectiveness of 
selection and the precision of varietal recommendations (5). 
Several statistical methods have been developed to identify
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Table	1:	List	of	genotypes	with	codes	

 patterns of genotype × environment (G×E) interaction, typically 
categorized into two groups: parametric and non-parametric. 
Parametric methods are further divided into univariate and 
multivariate approaches. Univariate methods include the 
stability factor D. Lewis,1984. Univariate methods encompass 
the stability factor, a regression-based approach, while 
multivariate methods include the AMMI (Additive Main Effects 
and Multiplicative Interaction) model (8), and Genotypic Main 
Effect plus Genotype-by-Environment (GGE) biplot analysis 
(30), (34) proposed that the regression coef�icient 'b' and the 
deviation from the regression coef�icient 'S²d' could be used to 
predict stable genotypes. A cultivar with b = 1 and S²d = 0 is 
likely to be stable across a range of different environmental 
conditions (2) . Additionally, Additive Main Effects and 
Multiplicative Interaction (AMMI) analysis has proven to be a 
valuable method for examining both linear and non-linear 
genotype responses to environmental conditions (28) . This 
approach combines ANOVA (with additive parameters) and 
principal component analysis (with multiplicative parameters) 
(8) into a single analysis, helping to interpret multi-
environment data in breeding programs. It is also a useful tool 
for graphically diagnosing genotype-environment interaction 
patterns. In this study, 28 wheat genotypes were evaluated for 
grain yield across different environments to identify stable 
genotypes for general and speci�ic adaptation in different 
sowing conditions and to estimate genotype-environment 
interaction and stability parameters.

2.	Material	and	Methods
2.1	Field	Experimentation
The present experiment was conducted at of BAU experimental 
area Kanke, Ranchi during rabi-2019. Birsa Agricultural 
University (BAU), Kanke is located at an elevation of 634 meters 
above mean sea level with 85°18'48.3"East longitude and 
23°25'47.3"North latitude. The experimental material for the 
present study comprised of twenty-eight wheat genotypes 
(Table 1) cultivars and along with four check varieties which are 
K-307, BG-3, DBW-14, WR-544 are used in this experiments.

2.2	Experimental	design	and	�ield	layout
These 28 wheat genotypes were sown during Rabi 2019 on 
three different date of sowing (Table 2) in Randomized Block 
Design (RBD) with two replications having a plot size of 0.6m x 
4m. In E1(Timely sown), E2(Late sown), E3(Very late sown) and 
every sowing is done with a gap period of �ifteen days.

Table	2:	Description	of	environments

2.3 Statistical Analysis
The combined analysis of variance of yield data overall 
environments, using genotype-environment interaction data 
for stability analysis using the AMMI model and GGE biplot 
analysis was performed by R software.

AMMI	MODEL
The data compared the performance of AMMI analysis with 
ANOVA approach and regression approach and found that 
ANOVA fails to detect a signi�icant interaction component and 
regression approach accounts only a small portion of the 
interaction sum of squares only when the pattern �its a speci�ic 
regression model (8). The AMMI model for T genotypes and S 
environment is given as
 n

  Y  = µ+ gi+ej+∑λ  α  y  + θij n in jn ij

 n-1
2 θ  ~ N (0,σ ) ; i = 1,2…T; j=1,2,…,Sij

Where,
 Y = mean yield of the ith genotype in the jth environmentij

 μ=general mean gi is the ith genotypic effect
 e =jth location effectj

 λn=eigen value of the PCA axis n
th th α  and γ = i  genotype j  environment PCA scores for the PCA in jn

axis n
 θ = residualij

 n = number of PCA axes retained in the model

Ordinarily the number n is judged on the basis of empirical 
consideration of F-test of signi�icance (Gauch 1988). The 
residual combines the PCA scores from the N-n' discarded axes, 
where N= min (G-1, E-1). The number of PCA axes to be retained 
is determined by testing the mean square of each axis with the 
estimate of residual through F-statistic (8). The mean sum of 
squares of each PCA axis is equal to the ratio of square of the 
corresponding eigen value and the degree of freedom of each 
axis obtained as G+E-1-2n.The member of AMMI family with 1 
PCA axis (while relegating all higher axes to the residual) is 
denoted AMMI I, while AMMI II retains2 PCA axes and so on. In 
general, AMMI N denotes the AMMI model with IPCA axes 1 to N, 
AMMI 0 has no IPCA axes and is identically ANOVA. The full 
model with minimum (G-1, E-1) Interaction Principal 
Component Axis, is denoted by AMMI E. The equation, except 
that it deletes the residual and error and that it stipulates a 
speci�ic AMMI model rather than the entire AMMI family.
The AMMI method is used for three main purposes. The �irst is 
model diagnoses, AMMI is more appropriate in the initial 
statistical analysis of yield trials, because it provides an 
analytical tool of diagnosing other models as subcases when 
these are better for particular data sets (8). Secondly, AMMI 
clari�ies the G x E interaction. AMMI summarizes patterns and 
relationships of genotypes and environments (Zobel et al. 
1988). The third use is to improve the accuracy of yield 
estimates. Gains have been obtained in the accuracy of yield 
estimates that are equivalent to increase the number of 
replicates by a factor of two to �ive (9). Such gains may be used to 
reduce testing cost by reducing the number of replications, to 
include more treatments in the experiments, or to improve 
ef�iciency in selecting the best genotypes.
The AMMI model combines the analysis of variance for the 
genotypes and environments main effects with principal 
components analysis of the genotype x environment 
interaction. It has proven useful for understanding complex G x 
E interaction. 
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Table	3:	Analysis	of	variance	for	stability-AMMI	model

The results can be graphed in a useful biplot that shows both 
main and interaction effects for both the genotypes and 
environments. AMMI combines analysis of variance (ANOVA) 
into a single model with additive and multiplicative parameters

Steps	in	Computation
Environment-wise analysis and pooled analysis of variance 
were conducted as per normal procedure. If genotypes, 
environments and G x E interaction are signi�icant, the analysis 
may proceed further for AMMI analysis.

If IPCA mean sum of square are signi�icant and residual mean is 
non signi�icant, the step may be conducted for development of 
biplot. The AMMI biplot is developed by placing both genotypes 
and environment mean value on X-axis and the respective IPCA 
axis eigen vector on Y axis.

Interpretation	of	biplots
In biplot displacements along the X-axis indicate differences in 
main (additive) effects, whereas displacement along the 
ordinate (Y-axis) indicate differences in interaction effects. For 
the points of different kinds, the AMMI model equation provides 
the expected yield value. The biplot has another important 
interpretation. The main effect for genotypes re�lects breeding 
advances. Similarly the main effects of environment re�lect 
overall comparison of environments.
From the values of mean and IPCA1, the genotypes are classi�ied 
into four distinct class:
 Class 1: Genotypes with high mean and positive IPCA1
 Class 2: Genotypes with high mean and negative IPCA1
 Class 3: Genotypes with low mean and negative IPCA1
 Class 4: Genotypes with low mean and positive IPCA1
In AMMI II interaction biplot between IPAC1 and IPAC2, the 
environment scores are joined to the origin by site lines. Sites 
with short spokes do not exert strong interactive forces. Those 
with long spokes exert strong interaction. The genotypes 
occurring close together on the plot will tend to have similar 
yield in all environments, while genotypes far apart may either 
differ in mean yield or show a different pattern of response over 
the environments. 

Hence, the genotypes near origin are not sensitive to 
environmental interaction and those distant from origins are 
sensitive and have large interaction. Genotypes and 
environment that fall in same sectors interact positively in 
contrast; if they fall in opposite sectors interact negatively. If 
they fall into adjacent sectors, interaction is somewhat more 
complex.

3.	Result	and	Discussion
3.1	Pooled	analysis	of	variance	as	per	AMMI	model
The combined analysis of variance as per AMMI model Table-4.6 
showed that mean sum of squares due to genotypes × 
environments interaction were highly signi�icant ( P < 0.01) for 
maximum characters evaluated under present investigation. 
Therefore considerable amount of variation was present among 
all the genotype as well as environments. AMMI analysis was 
performed only for yield and yield attributing traits. In Table:4 it 
has shows highly signi�icant differences were observed for 
genotypes, environments and G × E interaction for different 
characters like 1000 seed weight, grain yield per plant, 
biological yield and harvest index at 1% and 5% levels of 
signi�icance. For characters like no of grains per spike and no of 
effective tillers Signi�icant difference was observed for 
Genotype and environment and for spike length Signi�icant 
difference was observed for genotype only. The mean sum of 
squares attributed by genotypes were highest was highest for 
spike length (93.72%) followed by 1000 seed weight (91.39), 
grain yield per plant (65.49), no of effective tillers (65.09), no of 
grains per spike (37.85), harvest index (28.39) and biological 
yield (28.27). The mean sum of squares attributed by 
environment were highest were highest for no of grains per 
spike (51.47) followed by biological yield (49.65), harvest index 
(26.99), no of effective tillers (15.76), grain yield per plant 
(11.07), 1000 seed weight (5.09) and spike length (0.35). The 
highest mean sum of squares for G × E interaction was 
contributed by Harvest index (44.61) followed by grain yield per 
plant (23.47), biological yield (22.06), no of effective tillers 
(19.14), no of grains per spike (10.54), spike length (5.91) and 
1000 seed weight (3.51). G × E interaction was partitioned 
among the two interaction principal component axis (IPCA). 
The IPCA1 and IPCA2 partitioned the interaction effect into 
different values for different traits like for grain yield per plant 
IPCA1 Score (78.88) and IPCA2 score (21.11), spike length 
IPCA1 Score (65.90) and IPCA2 score (34.09), 1000 seed weight 
IPCA1 Score (72.90) and IPCA2 score (27.09), no of effective 
tillers IPCA1 Score (78.44) and IPCA2 score (21.55), no of grains 
per spike IPCA1 Score (83.86) and IPCA2 score (16.13), 
biological yield IPCA1 Score (77.11) and IPCA2 score (22.88), 
harvest index IPCA1 Score (62.80) and IPCA2 score (37.19).

Table	4:	AMMI	analysis	for	yield	and	yield	attributing	traits	in	wheat	(Triticum	aestivum	L.)	across	different	environments	(E ,	E &	E )1 2	 3
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	**=	signi�icant	at	1%,	*=	signi�icant	at	5%

3.2	AMMI	biplot	analysis
Spike	length	(cm)
AMMI1	biplot	(IPCAI	vs.	Mean)
Genotypes HD-2932 (G3) had the highest positive IPCAI values 
and UP- 2981 (G22) had the highest negative IPCAI value, 
indicating the least stability of these genotypes for spike length. 
The genotypes NI- 5439 (G17), K- 1317 (G18), K-307 (G14), 
MACS-6696 (G15) , MP- 1331 (G5), LBP- 2017-2 (G25), HD-3237 
(G10) and NIAW- 3170 (G6) scored near zero IPCA1 score. Out of 
which HD-2932 (G3) and BG- 3 (G27) had the highest spike 
length and DBW- 14 (G2) and PBW- 773 (G21) had the lowest 
spike length and were regarded as the most stable genotypes 
(Fig 1). A result similar to the present �indings has also been 
reported earlier by (14), (21). 

AMMI2	biplot	(IPCAI	vs.	IPCAII)
AMMI2 biplot for spike length represented the IPCAI and IPCAII 
scores of the genotype and G × E interactions and explained 
65.9% and 34.1% of the total variation. Environments E3 had 
the longest spokes and exerted strong G × E interaction. In 
contrast, Environment E2 and E1 had the shortest spoke and did 
not exert strong interactive environmental forces. The best 
adapted genotypes with respect to the site Environment E1 
were MP- 1331 (G5), RIL- 5138 (G19) and UP- 2981 (G22) 
whereas, genotypes K-307 (G14), LBP- 2017-2 (G25), NIAW- 
3170 (G6) and MACS-6696 (G15) were to environment E2. 
Genotypes WH-1235 (G28), BG- 3 (G27), HD-2932 (G3) and NI- 
5439 (G17) were well adapted in E3. In conclusion, it was found 
that stable genotypes for this trait were K-307 (G14), K- 1317 
(G18), NI- 5439 (G17), HD-3237 (G10), LBP- 2017-2 (G25), 
NIAW- 3170 (G6) and MACS-6696 (G15) with higher spike 
length and Environment E2 was least interactive environment 
(Fig 2). A result similar to the present �indings has also been 
reported earlier by (15), (26).

1000	seed	weight	(g)
AMMI1	biplot	(IPCAI	vs.	Mean)
Genotypes BG- 3 (G27) had the highest positive IPCAI values and 
DBW- 273 (G7) had the highest negative IPCAI value, indicating 
the least stability of these genotypes for 1000 seed weight. The 
genotypes M- 516 (G24), WH-1235 (G28), WH- 1239 (G16), 
DBW -233 (G13), DBW -252 (G11), DBW -110 (G4) and HI- 1621 
(G9) scored near zero IPCA1 score. Out of which DBW -110 (G4) 
had the highest 1000 seed weight and M- 516 (G24), WH-1235 
(G28) had the lowest 1000 seed weight and were regarded as 
the most stable genotypes (Fig 3). A similar result also been 
reported by (27), (7). 

	AMMI2	biplot	(IPCAI	vs.	IPCAII)
AMMI2 biplot for 1000 seed weight represented the IPCAI and 
IPCAII scores of the genotype and G×E interactions and 
explained 72.9% and 27.1% of the total variation (Fig.8).

Environments E1 had the longest spokes and exerted strong G × 
E interaction. In contrast, Environment E2 followed by E3 had 
the shortest spoke and did not exert strong interactive 
environmental forces. The best-adapted genotypes with respect 
to the site Environment E1 were MP- 1331 (G5), K- 1317 (G18) 
and DBW- 14 (G2) whereas, genotypes DBW -110 (G4), RWP-
2018-31 (G26) and DBW- 273 (G7) were to environment E2. 
Genotypes HI- 1621 (G9), HD-3237 (G10), DBW- 136 (G12), RIL- 
5138 (G19) and RW-5 (G20) were well adapted in E3. In 
conclusion, it was found that stable genotypes for this trait were 
M- 516 (G24), HI- 1621 (G9), WH-1235 (G28), WH- 1239 (G16) 
and RWP-2018-31 (G26) with higher 1000 seed weight and 
Environments E2 and E3 was least interactive environment (Fig 
4). Same trend has also been observed by (28), (12).

Number	of	grains	per	spike
AMMI1	biplot	(IPCAI	vs.	Mean)
Genotypes RW-5 (G20), NI-5439 (G17) and MP-1331 (G5) had 
the highest positive IPCAI values and MP- 1331 (G5) and DBW- 
273 (G7) had the highest negative IPCAI value, indicating the 
least stability of these genotypes for no of grains per pike. The 
genotypes RAJ- 4529 (G23), M- 516 (G24), DBW -252 (G11) and 
HD-3237 (G10) scored near zero IPCA1 score. Out of which HD-
3237 (G10) had the highest no of grains per spike and RAJ- 4529 
(G23), M- 516 (G24) had the lowest grains per spike and were 
regarded as the most stable genotypes (Fig 5). The �indings are 
in con�irmatory to that of (10), (4)

AMMI2	biplot	(IPCAI	vs.	IPCII)
AMMI2 biplot for no of grains per spike represented the IPCAI 
and IPCAII scores of the genotype and G×E interactions and 
explained 83.86% and 16.14% of the total variation. 
Environments E1 and E3 had the longest spokes and exerted 
strong G × E interaction. In contrast, Environment E2 had the 
shortest spoke and did not exert strong interactive 
environmental forces. The best-adapted genotypes with respect 
to the site Environment E1 were NI- 5439 (G17) whereas, 
genotypes HD-3237 (G10) were to environment E2. Genotypes 
HI- 1621 (G9), DBW -252 (G11) and K-307 (G14) were well 
adapted in E3. In conclusion, it was found that stable genotypes 
for this trait were HD-3237 (G10), DBW -252 (G11), K-307 
(G14), M- 516 (G24), RAJ- 4529 (G23) and LBP- 2017-2 (G25) 
with higher no of grains per spike and Environment E2 was least 
interactive environment (Fig 6). A result similar to the present 
�indings has also been reported earlier by (19).

Number	of	effective	tillers	per	plant
AMMI1	biplot	(IPCAI	vs.	Mean)
Genotypes DBW- 273 (G7), DBW- 14 (G2) and MP- 1331 (G5) 
had the highest positive IPCAI values and PBW- 773 (G21) had 
the highest negative IPCAI value, indicating the least stability of 
these genotypes for no of effective tillers per plant. 
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The genotypes PBW- 773 (G21), RAJ- 4529 (G23), DBW- 136 
(G12), HD-2932 (G3), DBW- 14 (G2) and K- 1317 (G18) scored 
near zero IPCA1 score. Out of which K- 1317 (G18) and DBW- 14 
(G2) had the highest harvest index and PBW- 773 (G21) and RAJ- 
4529 (G23) had the lower harvest index and were regarded as 
the most stable genotypes (Fig 11) The same trend has also been 
observed by (17), (12).

AMMI2	biplot	(IPCAI	vs.	IPCII)
AMMI2 biplot for harvest index represented the IPCAI and 
IPCAII scores of the genotype and G×E interactions and 
explained 62.8% and 37.2% of the total variation (Fig.24). 
Environments E3 had the longest spokes and exerted strong G × 
E interaction. In contrast, Environment E2 and E1 had the 
shortest spoke and did not exert strong interactive 
environmental forces. . The best-adapted genotypes with 
respect to the site Environment E1 were RW-5 (G20), HI-1628 
(G8), and BG- 3 (G27) whereas, genotypes PBW- 773 (G21) and 
DBW- 14 (G2) were to environment E2. Genotypes NI- 5439 
(G17) were well adapted in E3. In conclusion, it was found that 
stable genotypes for this trait were PBW- 773 (G21), DBW- 14 
(G2), HD-2932 (G3), K- 1317 (G18), DBW- 136 (G12) and RAJ- 
4529 (G23) with higher harvest index and Environment E2 was 
least interactive environment (Fig 12) The same trend has also 
been observed by (4), (31).

Grain	yield	per	plant	(g)
AMMI1	biplot	(IPCAI	vs.	Mean)
Genotypes LBP- 2017-2 (G25) and M- 516 (G24) had the highest 
positive IPCAI values and K-1317(G18) and WR-544 (G1) had 
the highest negative IPCAI value, indicating the least stability of 
these genotypes for grain yield. The genotypes DBW- 136 (G12) 
and HI- 1621 (G9) scored near zero IPCA1 score. Out of which 
HI- 1621 (G9) had the highest grain yield per plant and DBW- 
136 (G12) had the lower grain yield per plant and were regarded 
as the most stable genotypes (Fig 13). A result similar to the 
present �indings has also been reported earlier by (26), and 
(16).

AMMI1	biplot	(IPCAI	vs.	Mean)
AMMI2 biplot grain yield per plant represented the IPCAI and 
IPCAII scores of the genotype and G×E interactions and 
explained 78.8% and 21.12% of the total variation (Fig.26). 
Environments E1 had the longest spokes and exerted strong G × 
E interaction. In contrast, Environment E2 and E3 had the 
shortest spoke and did not exert strong interactive 
environmental forces. The best-adapted genotypes with respect 
to the site Environment E1 were DBW- 136 (G12), DBW- 14 (G2), 
DBW -252 (G11), and WR-544 (G1) whereas, genotypes DBW- 
273 (G7) and UP- 2981 (G22) were to environment E2. 
Genotypes RAJ- 4529 (G23) and HI- 1621 (G9) were well 
adapted in E3. In conclusion, it was found that stable genotypes 
for this trait were DBW -252 (G11), WR-544 (G1), DBW- 14 (G2), 
WH-1235 (G28) and PBW- 773 (G21) with higher grain yield per 
plant and Environment E2 and E3 was least interactive 
environment (Fig 14). Similar results was observed by (26), 
(15).

Conclusion
This study indicated that genotype, environment, and their 
interaction have a signi�icant effect on the yield stability as per 
the AMMI model the best-adapted genotypes with respect to the 
site Environment E1 were DBW- 136 (G12), DBW- 14 (G2), DBW 
-252 (G11) and WR-544 (G1) whereas, genotypes DBW- 273 

The genotypes PBW- 773 (G21), RIL- 5138 (G19), MACS-6696 
(G15), DBW -110 (G4) and DBW- 14 (G2) scored near zero 
IPCA1 score. Out of which DBW- 14 (G2) and DBW -110 (G4) had 
the highest no of effective tillers per plant and PBW- 773 (G21), 
RAJ- 4529 (G23) had the lowest no of effective tillers per plant 
and were regarded as the most stable genotypes (Fig 7). The 
�indings are con�irmatory to that of (22), (6)

AMMI2	biplot	(IPCAI	vs.	IPCII)
AMMI2 biplot for no of effective tillers per plant represented the 
IPCAI and IPCAII scores of the genotype and G×E interactions 
and explained 78.45% and 21.55% of the total variation 
(Fig.16). Environments E1 had the longest spokes and exerted 
strong G × E interaction. In contrast, Environment E2 and E3 had 
the shortest spoke and did not exert strong interactive 
environmental forces. The best adapted genotypes concerning 
the site Environment E1 were K-307 (G14), RAJ- 4529 (G23) and 
HI-1628 (G8) whereas, genotypes LBP- 2017-2 (G25) were to 
environment E2. Genotypes M- 516 (G24), WH-1235 (G28), 
DBW- 14 (G2) and PBW- 773 (G21) were well adapted in E3. In 
conclusion, it was found that stable genotypes for this trait were 
RIL- 5138 (G19), MACS-6696 (G15), DBW -110 (G4), PBW- 773 
(G21), DBW- 14 (G2) and WH-1235 (G28) with higher no of 
effective tillers per plant and Environment E3 was least 
interactive environment (Fig 8). Similar results was observed by 
(12), (15).

Biological	yield	(g/plant)
AMMI1	biplot	(IPCAI	vs.	Mean)
Genotypes HD-3237 (G10) and WH- 1239 (G16) had the highest 
positive IPCAI values and DBW- 273 (G7) and WH-1235 (G28) 
had the highest negative IPCAI value, indicating the least 
stability of these genotypes for biological yield. The genotypes 
UP- 2981 (G22), RIL- 5138 (G19), HI- 1621 (G9), K-307 (G14), 
HI-1628 (G8) and BG- 3 (G27) scored near zero IPCA1 score. Out 
of which HI-1628 (G8) and BG- 3 (G27) had the highest 
biological yield and UP- 2981 (G22) and RIL- 5138 (G19) had the 
lower biological yield and were regarded as the most stable 
genotypes (Fig 9).

AMMI2	biplot	(IPCAI	vs.	IPCII)
AMMI2 biplot for biological yield represented the IPCAI and 
IPCAII scores of the genotype and G×E interactions and 
explained 77.12% and 22.82% of the total variation (Fig.22). 
Environments E1 had the longest spokes and exerted strong G × 
E interaction. In contrast, Environment E2 and E3 had the 
shortest spoke and did not exert strong interactive 
environmental forces. The best-adapted genotypes with respect 
to the site Environment E1 were DBW -252 (G11) and NI- 5439 
(G17) whereas, genotypes RIL- 5138 (G19) and DBW- 136 (G12) 
were to environment E2. Genotypes M- 516 (G24), DBW -110 
(G4) and PBW- 773 (G21) were well adapted in E3. In 
conclusion, it was found that stable genotypes for this trait were 
RIL- 5138 (G19), HI- 1621 (G9), BG- 3 (G27), HI-1628 (G8) and 
UP- 2981 (G22) with higher biological yield and Environment 
E2 and E3 was least interactive environment (Fig 10) Similar 
results was also observed by (1), (23).

Harvest	index	(%)
AMMI1	biplot	(IPCAI	vs.	Mean)
Genotypes HD-2932 (G3) and NIAW- 3170 (G6) had the highest 
positive IPCAI values and RW-5 (G20) and DBW -110 (G4) had 
the highest negative IPCAI value, indicating the least stability of 
these genotypes for harvest index. 
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(G7) and UP- 2981 (G22) were to environment E2. Genotypes 
RAJ- 4529 (G23) and HI- 1621 (G9) were well adapted in E3. In 
conclusion, it was found that stable genotypes for this trait were 
DBW -252 (G11), WR-544 (G1), DBW- 14 (G2), WH-1235 (G28) 
and PBW- 773 (G21) with higher grain yield per plant and 
Environment E2 and E3 was the least interactive environment. 
All in all, these genotypes can be used as high-yielding lines, 
which are stable too, and for farmers, DBW -252 (G11), WR-544 
(G1), DBW- 14 (G2), WH-1235 (G28) and PBW- 773 (G21) can be 
used for high yield with adaptability in a timely sown irrigated 
environment, whereas genotypes RAJ- 4529 (G23) and HI- 1621 
(G9) were adapted to late-sown rainfed environment. These 
genotypes need to be further tested in heat- and drought-
stressed environments to ensure their performance over the 
years.

Future	Scope	of	Study
AMMI analysis revealed about the stability of genotypes 
according to the environment speci�ically which will be helpful 
for varietal recommendation according to the environment and 
sowing times without loss of yield. As the world is facing climate 
change problem so we need more adaptable genotypes which is 
highly adaptable to different environment. Genotypes which 
were identi�ied superior for grain yield and other desirable 
traits can be further utilized in crop improvement.
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AMMI	 biplot	 display	 for	 yield	 and	 yield	 contributing	 traits	 of	 wheat	
(Triticum	aestivum	L.)	genotypes	for	environments	(E 	E2	&	E )	Spike	length	1, 3

(cm)

Fig-	1:	AMMI1	biplot	display	(mean/main	effects	vs.	IPCAI)	of	wheat	 	 	genotypes	for	
spike	length	in	three	environments

Fig-	2:	AMMI2	biplot	display	(IPCAI	vs.	IPCAII)	of	wheat	genotypes	for	spike	length	in	
three	environments.

1000	seed	weight	(g/plant)
AMMI1	biplot	display	(mean/main	effects	vs.	IPCAI)	of	wheat

Fig-	3:	AMMI1	biplot	display	(mean/main	effects	vs.	IPCAI)	of	wheat	genotypes	for	1000	
seed	weight	in	three	environments

Fig-	4:	AMMI2	biplot	display	(IPCAI	vs.	IPCAII)	of	wheat	genotypes	for	1000	seed	weight	
in	three	environments.
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No	grains	per	spike

Fig-	5:	AMMI1	biplot	display	(mean/main	effects	vs.	IPCAI)	of	wheat	genotypes	for	No	of	
grains	per	spike	in	three	environments

Fig-	6:	AMMI1	biplot	display	(IPCAI	vs.	IPCAII)	of	wheat	genotypes	for	No	of	grains	per	
spike	in	three	environments

No	effective	tillers	per	plant

Fig-	7:	AMMI1	biplot	display	(mean/main	effects	vs.	IPCAI)	of	wheat	genotypes	for	No	of	
effective	tillers	per	plant	in	three	environments

Fig-	8:	AMMI1	biplot	display	(IPCAI	vs.	IPCAII)	of	wheat	genotypes	for	No	of	effective	
tillers	per	plant	in	three	environments

Biological	yield

Fig-	 9:	 AMMI1	biplot	 display	 (mean/main	 effects	 vs.	 IPCAI)	 of	wheat	 genotypes	 for	
Biological	yield	in	three	environments

Fig-	10:	AMMI1	biplot	display	(IPCAI	vs.	IPCAII)	of	wheat	genotypes	for	Biological	yield	
in	three	environments
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Harvest	index	(%)

Fig-	11:	AMMI1	biplot	display	(mean/main	effects	vs.	IPCAI)	of	wheat	genotypes	for	
Harvest	index	in	three	environments

Fig-	12	AMMI1	biplot	display	(IPCAI	vs.	IPCAII)	of	wheat	genotypes	for	Harvest	index	in	
three	environments

Grain	yield	per	plant

Fig-	13:	AMMI1	biplot	display	(mean/main	effects	vs.	IPCAI)	of	wheat	genotypes	for	
grain	yield	per	plant	in	three	environments

Fig-	14:	AMMI1	biplot	display	(IPCAI	vs.	IPCAII)	of	wheat	genotypes	for	grain	yield	per	
plant	in	three	environments
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