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	ABSTRACT	
Evaluation	of	river	basins	requires	 land-use	and	land-cover	(LULC)	change	detection	to	determine	hydrological	and	ecological	
conditions	for	sustainable	use	of	their	resources.	This	study	investigates	the	changes	in	cropping	patterns,	classi�ication	accuracy,	
and	 land	use	 patterns	 during	 the	 kharif	 and	 rabi	 seasons	 of	 2018-19.	 The	 supervised	 classi�ication,	 employing	 the	maximum	
likelihood	classi�ier	method,	was	used	to	generate	the	classi�ied	LULC	maps	in	the	ERDAS	Imagine.	The	classi�ied	images	produced	by	
this	 technique	were	 evaluated	 for	accuracy	 through	matrix	union	using	 the	 statistical	kappa	coef�icient	and	overall	 accuracy	
measures.	Change	detection	for	the	periods	2018-19	was	conducted	using	matrix	union	(intersection)	to	identify	apparent	changes	
in	various	LULC	classes.	The	analysis	shows	a	signi�icant	shift	in	cropping	practices,	particularly	a	notable	transition	from	rice	to	
wheat	during	 the	 rabi	 season,	with	wheat	 cultivation	 increasing	by	75.53%.	Other	crops	 such	as	mustard,	 vegetable	pea,	and	
sugarcane	also	 saw	 signi�icant	 changes	 in	 acreage,	 re�lecting	 farmers'	 responses	 to	market	 and	 climatic	 conditions.	 Soybean,	
traditionally	grown	during	the	kharif	season,	shifted	to	wheat	in	the	rabi	season.	The	classi�ication	accuracy	for	both	kharif	and	rabi	
crops	 was	 high,	 with	 overall	 accuracies	 of	 92.95%	 and	 94.02%,	 respectively,	 and	 Kappa	 coef�icients	 of	 89.98%	 and	 92.81%,	
indicating	 reliable	 classi�ication	 results.	 Key	 challenges	 included	 resolving	 spectral	 confusion	 between	 crops	 (e.g.,	 wheat	 vs.	
mustard)	 and	 addressing	 cloud	 cover	 limitations	 in	 kharif-season	 imagery.	 The	 study's	 contributions	 include:	 (1)	 a	 robust	
framework	 for	 high-resolution	 crop	 monitoring	 in	 heterogeneous	 landscapes,	 (2)	 quanti�ication	 of	 rapid	 cropping	 system	
transitions,	and	 (3)	demonstration	of	Sentinel-2's	operational	utility	 for	precision	agriculture.	Results	 support	 evidence-based	
policymaking	for	sustainable	water	and	land	use	in	monsoon-dependent	systems.
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Introduction
Land cover refers to the physical state of the Earth's surface and 
its biological elements, while land use describes how this land 
cover is altered by human activities to meet speci�ic needs and 
purposes [1].In remote sensing, change detection is one of the 
major applications of remotely sensed data obtained from 
earth-orbiting satellites. Several studies have been conducted 
on the surface of earth to assess, monitor, and evaluate LULC 
change information coupled with the historical remotely sensed 
data because of repetitive coverage at short intervals 
[2],[3],[4].In recent years, the growth of human activities could 
greatly contribute to understanding the dynamics and patterns 
of land use and land cover changes [5],[6],[7]. 

In addition, LULC investigation has the potential to greatly 
impact natural resource management[8]. The accurate and 
suf�icient information regarding LULC has become vital for 
determining the social, economic, and environmental 
repercussions of such changes and for understanding those 
repercussions [9]. The rapid urban population growth strains 
urban infrastructure, resulting in a low people-to-land ratio and, 
as a result, land degradation. Recently, it has become necessary 
to evaluate changes in LULC to carry out appropriate planning 
and ensure natural resources are protected in various ways by 
utilizing geospatial technology [10].
In the domains of hydrometeorology, climate change, and 
environmental studies, remote sensing (RS) and geographic 
information systems (GIS) have been employed for a wide range 
of applications. While RS provides high-resolution spatial data, 
GIS offers specialized tools for more ef�icient environmental and 
ecosystem management [11]. One common technique for 
quantifying land use and land cover (LULC) is change detection 
analysis, which often utilizes multi-spectral RS data. Multi-
spectral and multi-temporal RS satellite data have opened up
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numerous research possibilities, including the exploration of 
LULC patterns. A variety of Landsat imagery, such as data from 
the Landsat Operational Land Imager (OLI), Thermal Infrared 
Sensor (TIRS), Enhanced Thematic Mapper Plus (ETM+), 
Thematic Mapper (TM), and Multi-Spectral Scanner (MSS), have 
been instrumental in examining LULC changes[12]. These 
images also provide valuable insights into regular crop 
monitoring and various agricultural or environmental indices. 
Moreover, RS data has facilitated local environmental studies 
and supported LULC change management and conservation 
efforts at global, regional, and local levels. Various methods used 
to detect LULC changes include the use of remote sensing (RS) 
data, cross-correlation analysis, image differencing, post-
classi�ication comparison (PCC), object- and pixel-based 
classi�ication techniques for mapping LULC changes, and image 
fusion approaches for detecting these changes[13],[14].
Most methods for spectral classi�ication of remotely sensed 
images are based on per-pixel approaches, which have been 
applied with varying levels of success, largely depending on the 
spatial uniformity of the land cover being mapped. For change 
detection, algorithms typically use a post-classi�ication 
comparison (PCC) or, less frequently, an image-to-image 
comparison that assesses spectral changes between different 
dates[15], [16]. However, one signi�icant drawback of these 
methods, which is compounded by the limitations of per-pixel 
classi�iers, is the potential for recording false changes due to 
inaccuracies in land-use maps for individual years[17],[18].To 
effectively monitor these changes, it is essential to produce 
reliable and accurate LULC maps. The information derived from 
these maps is vital for various areas such as policy development, 
conservation planning, urban development, deforestation 
management, and agricultural monitoring. Thanks to advanced 
remote sensing technologies, these changes can now be tracked 
at multiple scales[19]. The objective of this study is 1) to analyze 
land-use and land-cover (LULC) changes within a river basin 
necessary for the sustainable management of its resources. 2) to 
investigate changes in cropping patterns, evaluate the accuracy 
of classi�ication methods, and track land use during the kharif 
and rabi seasons of 2018-19. 

Materials	and	Methods
Site	Descriptions
The study area, Ramganga River sub-basin extended an area 
2584 across the Nainital and Udham Singh Nagar districts of 
Uttarakhand and the Rampur and Bareilly districts of Uttar 
Pradesh (Fig.1). It is located in between the longitudes 
79°1'19.254" E to 79°31'32.97" E, latitudes 28°30'51.9156" N to 
29°26'28.0176" N and altitude ranges from 172 m to 2631 m 
above mean sea level (MSL).

Satellite	data
Data	collection	
Sentinel-2 Level-2 products which provide bottom-of-
atmosphere (BOA) re�lectance images at 10 m, 20 m and ~10 
days temporal resolution was acquired from the ESA platform 
(https://scihub.copernicus.eu/dhus/#/home). For the study, 
we used blue, green, redand NIR (B2, B3, B4, and B8) at 10 m; 
Vegetation red edge (B5, B6, B7, B8A) and SWIR (B11 and B12) 
at 20 m resolution. The satellite data were acquired in 19th, 29th 
September, and 4th October, 2018 during kharif; 28th 
December, 2018, 10th January, 2019 and 23rd January, 2019 
spanning for rabi seasons. A set of total 6 level-2 S2 cloud-free 
images were selected for this study. 

The detail on satellite sensors, data products, and dates of 
acquisition is listed in Table 1.

Data	pre-processing	and	classi�ication
To achieve accurate surface information from satellite data, it is 
essential to apply radiometric and atmospheric corrections. 
Radiometric and atmospheric corrections were performed 
using the ArcGIS 10.6 platform prior to the classi�ication. The 
imagery scenes were then mosaicked, and the study area was 
extracted. Our study combined various bands such as RGB B4, 
B3, B2, NIR B8, vegetation red edge (B5, B6, B7, and B8A), SWIR 
(B11 and B12) to facilitate the gathering of training data 
required for the classi�ication of the images. The use of 
supervised classi�ication required the collection of training data 
for LULC classes. This is the most important and dif�icult stage of 
the supervised categorization process.  Using visual 
interpretation, training areas for each class were drawn with 
polygons, and the Maximum likelihood classi�ier was used for 
classi�ication (Fig. 2). It assumes that radiometric values within 
each class follow a normal distribution, allowing each class to be 
characterized using a probability function given by its mean 
vector and variance-covariance matrix. 

Accuracy	Evaluation
It is important to perform an accuracy assessment between 
reference data and classi�ied data. The accuracy of 2018 and 
2019 LULC maps was assessed by independent datasets. The 
kappa coef�icient, overall accuracy, and producer's and user's 
accuracy were calculated from the error matrix. The error 
matrix is the most widely used and recognized tool for 
presenting accurate results [20],[21]. Commission error (also 
referred to as user's accuracy) and omission error (or 
producer's accuracy) assess the likelihood that a given cell value 
matches the actual ground truth data and the generated 
classi�ication, respectively. The overall classi�ication accuracy 
provides a summary of the degree of agreement or 
disagreement between the classi�ied data and the reference 
ground information about land use[22].
This paper assessed quantitative accuracy using sampling 
procedures. First, we generated a shape�ile test data with 1443 
points. A confusion matrix is used for assessing accuracy. The 
calculation involves selecting a sample from a speci�ic class in a 
categorized map and validating it against the �ield. The �ield data 
is used for the accuracy assessment for the years 2018 and 2019, 
the classi�ication results of the Sentinel-2A satellite images. The 
classi�ication accuracy of each method was evaluated based on 
overall accuracy and the kappa coef�icient (derived from the 
confusion matrix).

Results	and	Discussions
Classi�ication	of	major	LULC
About 8 and 11 classes were classi�ied during kharif	and rabi 
crop season (Fig.3). For kharif, rice is the dominant crop 
cultivated on a Ramganga river subbasin followed by sugarcane 
along with sparsely cultivated soybean and vegetables like, 
tomato. 



	©	2025	AATCC	Review.	All Rights Reserved. 167.

Hari	Krishna	B	et	al.,	/	AATCC	Review	(2025)

Similarly, during rabi season the wheat as cultivated as major 
crop over the river basin followed by sugarcane crop. Moreover, 
mustard, vegetable pea, potato and tomato were grown sparsely 
along with wheat crop, respectively.

Accuracy	assessment
Accuracy assessment is a critical aspect of Land Use/Land Cover 
(LULC) classi�ication studies [23]. The reliability of 
classi�ication results is only ensured after performing thorough 
accuracy checks, as LULC maps derived from satellite imagery 
can contain errors due to factors like classi�ication techniques 
and satellite data retrieval methods[24]. In this study, we 
employed the maximum likelihood classi�ication supervised 
learning method to perform classi�ication land cover over both 
kharif and rabi season. The accuracy of the Land Use/Land 
Cover (LULC) classi�ication was assessed using an error matrix, 
which compares the classi�ied data with reference ground truth 
data. The combination of texture and coherence features alone 
can yield satisfactory classi�ication results, achieving an overall 
accuracy of 91.55% a kappa coef�icient of 89.35% [25]. In this 
study results show an overall classi�ication accuracy of 92.95%, 
indicating a high level of agreement between the classi�ied map 
and the actual ground data. Kappa coef�icient of 89.98% further 
con�irms excellent classi�ication quality, suggesting minimal 
chance agreement (Table. 2). Commission errors (CE) and 
omission errors (OE) were evaluated for each class. Rice and 
sugarcane exhibited relatively low commission errors (5.78% 
and 7.14%, respectively) and high user accuracy (94.22% and 
92.86%), indicating strong classi�ication performance. Classes 
such as tomato and soybean showed higher commission errors 
( 1 2 . 7 7 %  a n d  1 2 . 1 0 % ) ,  i n d i c a t i n g  m o r e  f r e q u e n t 
misclassi�ication, but their user accuracies remained acceptable 
at 87.23% and 87.90%, respectively. For Built-up and Forest 
areas, commission errors were low, and both classes showed 
high producer and user accuracies, demonstrating reliable 
classi�ication. The Water class had a perfect user accuracy of 
100%, with no commission errors, highlighting �lawless 
classi�ication for this class.The Producer's Accuracy (PA) ranged 
from 78.10% (tomato) to 97.96% (rice), indicating that most 
land cover types were correctly identi�ied by the classi�ication 
method, though some classes like tomato and scrub showed 
relatively lower accuracy. Overall, the classi�ication achieved a 
high level of reliability, with the main sources of error being 
misclassi�ications in tomato and soybean. However, the 
accuracy levels for all classes are deemed suf�icient for practical 
land-use mapping applications.
Likely, during rabi season crop classi�ication using remote 
sensing data achieved an overall accuracy of 94.02% and a 
Kappa coef�icient of 92.81%, indicating strong agreement with 
ground truth data (Table. 3). Crops like, wheat and scrub had the 
highest user accuracies (96.19% and 97.83%, respectively) and 
low commission errors, re�lecting excellent classi�ication 
performance. While most crops showed strong results, with 
user accuracies ranging from 91.09% to 94.19%, chilli and 
tomato exhibited slightly higher commission errors (10% and 
8.53%), though their accuracies remained acceptable. Overall, 
the classi�ication model performed well ,  accurately 
distinguishing most rabi crops, with minor room for 
improvement in some classes.

Change	detectionof	LULC
The cropping pattern shift from kharif to rabi season in 2018-19 
highlights signi�icant changes in agricultural land use, driven by 
seasonal and environmental factors (Fig.4 & Table 4). 

Rice, the dominant kharif crop, exhibited considerable 
transitions to various rabi crops, re�lecting a change in farming 
priorities and agricultural strategies. The most notable shift was 
from rice to wheat, which saw a substantial increase of 75.53% 
in area, totaling 82,001.76 ha. The land use/land cover analysis 
revealed that supervised classi�ication using the maximum 
likelihood method is more accurate [26]. In this study, the 
maximum likelihood classi�ier outperformed the classifying 
rice, sugarcane, built-up land, and forest areas. This dramatic 
shift indicates a stronger emphasis on wheat cultivation during 
the rabi season, possibly due to its higher market demand or 
favorable climatic conditions. The conversion of rice �ields to 
wheat was a major factor in�luencing overall cropping patterns, 
as wheat is a staple rabi crop that thrives under cooler 
temperatures. This large-scale transition underscores wheat's 
economic importance in the region and its adaptability to the 
changing weather patterns during the rabi season.
Other signi�icant transitions from rice to mustard (8.63%, 
9,369.53 ha) and rice to vegetable pea (14.14%, 15,346.12 ha) 
also played an important role in restructuring the cropping 
landscape. Mustard, an oilseed crop, saw a noticeable increase, 
highlighting the rising demand for edible oils in the region, as 
well as the suitability of mustard for cooler rabi conditions. The 
conversion to vegetable peas suggests a growing trend toward 
pulse cultivation, which can enrich soil quality by �ixing 
nitrogen, a critical practice in sustainable farming. Additionally, 
shifts from rice to potato (1.08%, 1,176.24 ha) and rice to 
sugarcane (0.08%, 84.89 ha) show the diversi�ication of 
cropping systems. While the area under potato remained 
relatively small, it points to the adaptability of potato farming in 
areas with favorable irrigation and soil conditions. The 
conversion to sugarcane, though minimal, re�lects its economic 
potential in certain regions, where its processing offers a steady 
income through sugar production.
In contrast, soybean also experienced a signi�icant shift, with 
the area under this crop transitioning predominantly to wheat 
(88.25%, 2,025.05 ha) during the rabi season [27]. This suggests 
that farmers may have been in�luenced by the pro�itability and 
demand for wheat, leading to a large-scale replacement of 
soybean �ields. Sugarcane showed a notable internal shift within 
the same crop category, with sugarcane to sugarcane (93.30%, 
29,707.46 ha), highlighting a consolidation of sugarcane 
farming during the rabi season, likely driven by favorable 
irrigation and market factors (Table.4). Additionally, sugarcane 
to scrub (6.70%, 2,134.64 ha) indicates some land being left 
uncultivated or shifting towards less intensive farming 
practices. Overall, the changes in cropping patterns between 
kharif and rabi seasons in 2018-19 re�lect evolving agricultural 
practices, in�luenced by factors such as market demand, climate 
conditions, and crop pro�itability. These shifts are critical in 
understanding the region agricultural economy and the 
challenges faced by farmers in adapting to changing conditions.

Conclusions
In conclusion, the cropping pattern analysis for the kharif and 
rabi seasons of 2018-19 reveals key shifts in agricultural 
practices. There was a signi�icant transition from rice to wheat, 
with wheat acreage increasing by 75.53% during the rabi 
season. Other shifts included the expansion of mustard, 
vegetable pea, and sugarcane, demonstrating farmers' 
responsiveness to market and climatic factors. Soybean also 
moved towards wheat cultivation, highlighting a trend towards 
more pro�itable crops. The classi�ication accuracy was high, 
with overall accuracies of 92.95% for kharif and 94.02% for rabi, 
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Figure.	1.	Study	area	of	Ramganga	river	subbasin
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