
Introduction	
The rhizosphere refers to the narrow region of soil directly 
in�luenced by plant roots. This dynamic zone is a hotspot for 
microbial activity and is marked by intense physical, chemical, 
and biological interactions. It hosts a diverse microbial 
community that forms both symbiotic and asymbiotic 
associations with plants, signi�icantly in�luencing plant growth 
and health [11]. However, it is also a critical battleground where 
soil-borne pathogens pose severe threats to crop productivity 
and global food security. These pathogens often initiate 
infections at the early seedling stage, particularly in nurseries,
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	ABSTRACT	
Rhizospheric	 bacteria	 have	 emerged	 as	 effective	 Biological	 Control	 Agents	 (BCAs)	 against	 soil-borne	 pathogens,	 promoting	
sustainable	agricultural	practices.	The	rhizosphere,	 in�luenced	directly	by	root	exudates,	 is	a	critical	zone	of	 intense	microbial	
interactions,	 housing	 diverse	 bene�icial	 bacteria	 including	 genera	 such	 as	 Pseudomonas,	 Bacillus,	 Azotobacter,	 Rhizobium,	
Enterobacter,	and	Burkholderia.	These	microbes	enhance	plant	health	through	multiple	biocontrol	mechanisms.	Direct	biocontrol	
mechanisms	 include	 competitive	 exclusion,	 antibiotic	 and	 bacteriocin	 production,	 siderophore-mediated	 iron	 sequestration,	
quorum	sensing	interference,	and	enzymatic	pathogen	degradation.	Notably,	Pseudomonas	�luorescens	produces	antibiotics	like	
phenazine-1-carboxylic	acid,	pyoluteorin,	pyrrolnitrin,	and	2,4-diacetylphloroglucinol,	effectively	suppressing	pathogens	such	as	
Fusarium	spp.,	Rhizoctonia	solani,	and	Pythium	ultimum.	Bacillus	species	produce	broad-spectrum	antifungal	antibiotics	including	
iturin,	 fengycin,	and	zwittermicin	A,	signi�icantly	contributing	to	disease	management.	Bacteriocins	further	aid	suppression	by	
targeting	 closely	 related	 pathogenic	 strains.	 Indirect	 mechanisms	 involve	 inducing	 plant	 Induced	 Systemic	 Resistance	 (ISR),	
preparing	plants	against	pathogen	invasions	through	signaling	pathways	mediated	by	jasmonic	acid	and	ethylene.	Additionally,	
rhizospheric	bacteria	enhance	plant	growth	via	phosphorus	solubilization,	nitrogen	�ixation,	and	phytohormone	synthesis,	boosting	
plant	vigor	and	disease	 tolerance.	However,	 the	practical	application	of	 these	BCAs	 faces	 challenges	 such	as	 inconsistent	 �ield	
performance	 due	 to	 environmental	 variability,	 limited	 understanding	 of	 complex	 microbial	 interactions,	 and	 dif�iculties	 in	
formulating	stable	and	effective	microbial	consortia.	Advances	in	molecular	approaches	such	as	metagenomics,	transcriptomics,	
and	metabolomics	have	deepened	understanding	of	plant-microbe	interactions,	identifying	key	biocontrol	genes	and	metabolites.	
This	facilitates	the	development	of	targeted	bioformulations,	particularly	multi-strain	bacterial	consortia	(MSBCAs),	which	offer	
enhanced	 colonization	 ef�iciency	 and	 consistent	 pathogen	 suppression.	 Amid	 rising	 environmental	 concerns	 about	 chemical	
pesticides,	rhizospheric	bacteria	provide	sustainable	alternatives,	contributing	signi�icantly	to	the	advancement	of	eco-friendly	
agricultural	practices.
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leading to systemic crop health issues throughout the growing 
season. They possess survival strategies that allow persistence 
in the soil for extended periods, either as saprophytes, in 
association with plant debris, or within soil organic matter [62, 
98].
Dominant fungal pathogens like Fusarium spp. and Alternaria 
spp. are notably aggressive and require ef�icient control 
strategies [76, 85]. Other pathogens, including Pythium, 
Phytophthora, Sclerotinia, and Verticillium spp., can cause yield 
losses ranging from 50–70% [78]. Conventional practices such 
as crop rotation, chemical pesticides, and resistant cultivars 
often yield inconsistent outcomes and lack sustainability [44, 
45]. Hence, there is growing interest in biological control agents 
(BCAs), particularly rhizospheric bacteria, due to their 
multifaceted mechanisms and environmental safety.
Rhizospheric bacteria exert biocontrol effects through direct 
and indirect mechanisms that suppress the proliferation and 
pathogenicity of soil-borne pathogens [37, 9]. 
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A primary direct mechanism is competitive exclusion, wherein 
bene�icial microbes outcompete pathogens for nutrients and 
ecological niches, especially in exudate-rich root zones. These 
bene�icial bacteria produce antagonistic compounds such as 
lipopeptides, biosurfactants, volatiles, and bacteriocins that 
inhibit pathogen metabolism, growth, and virulence [11].
BCAs can also disrupt quorum sensing (QS)—a bacterial 
communication system regulating virulence—by producing 
quorum quenching (QQ) enzymes like lactonases, chitinases, 
and pectinases, thereby thwarting coordinated pathogenic 
attacks [89]. Indirectly, they induce systemic resistance (ISR) in 
plants, enhancing the host's defense machinery to respond 
more effectively to future pathogen challenges [37, 115].
Beyond pathogen suppression, rhizospheric bacteria promote 
plant growth by solubilizing phosphorus, �ixing atmospheric 
nitrogen, and synthesizing phytohormones such as auxins and 
cytokinins [111, 116]. Despite their vast bene�its, the 
widespread application of BCAs is challenged by the complexity 
of plant-pathogen-microbe interactions, making it dif�icult to 
pinpoint speci�ic biocontrol mechanisms [37, 116]. A 
comprehensive understanding of these interactions is essential 
for optimizing BCA formulations, tailoring application 
strategies, and enhancing compatibility among the biocontrol 
agent, host plant, and soil environment.
Recent advances in metagenomics, transcriptomics, and 
metabolomics provide promising tools to unravel microbial 
functions and interactions in the rhizosphere. These 
approaches help identify key genes and metabolites involved in 
biocontrol activities, supporting the development of next-
generation bioformulations for integrated disease management 
[38, 114].
BCAs are proli�ic producers of natural antimicrobial 
compounds, including secondary metabolites such as 
antibiotics, toxins, non-ribosomal peptides, ribosomal peptides, 
polyketides, and volatile organic compounds (VOCs) [9, 37]. 
These bioactive molecules target critical cellular processes in 
pathogens, making them potent tools for crop protection. Given 
their diversity and ef�icacy, rhizospheric bacteria are invaluable 
assets in sustainable agriculture.
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In contrast to the environmental and agronomic concerns posed 
by chemical pesticides—including residue accumulation, 
higher input costs, resistant pathogen strains, and disruption of 
bene�icial soil microbiota [95]—BCAs offer eco-friendly and 
sustainable alternatives with long-term bene�its for soil and 
plant health [110]. Although not a one-size-�its-all solution, 
integrating BCAs into disease management programs holds 
promise to transform plant protection practices. Continued 
research in formulation technology, �ield application, and 
regulatory policies will be pivotal for mainstreaming their use. 
Various bacterial and fungal biocontrol agents against plant 
pathogens are summarized in Table 1.

Table	–	1:	Major	soil-borne	diseases	caused	by	soil-borne	pathogens	in	crop	plants

Diversity	and	Ecology	of	Rhizospheric	Bacteria
The rhizosphere is a dynamic zone of soil closely in�luenced by 
plant roots, densely populated by microbial life. Bacterial 
densities can range between 10¹⁰–10¹² cells/g of soil, 
signi�icantly higher than in bulk soil [84]. Predominant bacterial 
phyla include Proteobacteria, Firmicutes, Actinobacteria, 
Bacteroidetes, and Cyanobacteria [6], [84]. Dominant genera 
such as Pseudomonas, Bacillus, Azotobacter, Rhizobium, and 
Burkholderia are frequently isolated from crops like wheat, 
maize, rice, and legumes [6], [84].
These bacteria play key ecological roles including nitrogen 
�ixation, phosphate solubilization, potassium mobilization, and 
s iderophore  product ion  [106] .  They  a lso  produce 
phytohormones such as IAA, gibberellins, and cytokinins, 
enhancing plant development [84]. Furthermore, antibiotics, 
lytic enzymes (e.g., chitinases), and volatile organic compounds 
help suppress pathogens [6], [84].
Plant root exudates modulate these interactions by acting as 
chemoattractants, shaping microbial communities. Root 
developmental stages in�luence bacterial community structure, 
where young roots favor r-strategists and older roots support k-
strategists [6]. Soil properties including pH, salinity, moisture, 
and organic matter signi�icantly affect diversity [64]. Salinity 
and metal stress enrich for stress-tolerant species like Bacillus 
and Paenibacillus [106].
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Figure-2:	Diversity	and	Ecological	Distribution	of	Rhizospheric	Bacteria

Rhizobacteria contribute to phytoremediation and iron 
acquisition, essential for plant defense [114]. Functional 
diversity includes genes for amino acid, carbohydrate, and 
energy metabolism, aiding adaptation to varying habitats [64]. 
Community composition shifts spatially (rhizosphere vs. bulk 
soil) and temporally. For instance, rhizospheres in the Yellow 
River Delta exhibited enriched metabolizers under saline 
conditions [64], while seasonal shifts in Ebinur Lake showed 
greater diversity in summer, corresponding with root activity 
[114].

Mechanisms	of	Biological	Control	by	Rhizospheric	Bacteria

Figure-3:	Mechanisms	of	Biocontrol	by	Rhizospheric	Bacteria

a.	Antibiotic	and	Bacteriocin	Production
One of the primary modes of action employed by rhizospheric 
bacteria against phytopathogens involves the production of 
antimicrobial compounds such as antibiotics and bacteriocins. 
These secondary metabolites exert fungistatic or fungicidal 
effects by inhibiting spore germination, lysing fungal mycelia, or 
impeding pathogen metabolism [41], [104]. Pseudomonas	
�luorescens  synthesizes various antibiotics including 
phenazine-1-carboxylic acid (PCA), pyoluteorin, pyrrolnitrin, 
and 2,4-diacetylphloroglucinol (DAPG), which suppress 
pathogens like Gaeumannomyces	graminis, Rhizoctonia	solani, 
and Pythium	ultimum [47], [45]. Bacillus spp. are also proli�ic 
antibiotic producers, with B.	 subtilis producing iturin A, 
surfactin, and fengycin—all exhibiting strong antifungal 
properties [63]. Additionally, Bacillus	 cereus strain UW85 
suppresses damping-off diseases via zwittermicin A and 
kanosamine [40]. Mutant strains with enhanced antibiotic 
production often show increased biocontrol ef�icacy. 
Bacteriocins such as agrocin 84 from Agrobacterium	
radiobacter K84 are used commercially to control crown gall 
disease caused by A.	 tumefaciens [58]. Similarly, bacteriocin-
producing strains of P.	�luorescens and P.	solanacearum reduce 
disease incidence [40]. Antibiotic-de�icient mutants frequently 
lack biocontrol ability, highlighting the importance of secondary 
metabolites [52], [104], [55].

b.	Nutrient	Competition	and	Niche	Exclusion
Rhizobacteria suppress plant pathogens by competing for 
nutrients and colonization sites. Species like Pseudomonas 
deplete root and seed exudates, limiting carbon and nitrogen 
availability to pathogens like G.	 graminis and Fusarium	
oxysporum [101], [19], [36]. These bacteria also colonize root 
zones—particularly lateral root emergence sites—thus 
excluding pathogens through niche occupation [101].

c.	Siderophore	Production
Siderophores are iron-chelating compounds secreted under 
low-iron conditions. Fluorescent pseudomonads produce 
pyoverdines that bind Fe³⁺, restricting access to pathogens such 
as P.	ultimum, F.	oxysporum, and G.	graminis [59], [65], [16], [36]. 
Strains de�icient in siderophore production are less effective 
biocontrol agents [19], [13]. Rhizobacteria also induce systemic 
resistance in plants involving jasmonic acid and ethylene 
pathways rather than salicylic acid [83]. For instance, P.	
�luorescens CHA0 protects cucumber and tobacco via ISR [53]. 
Regulatory genes such as gacA play a key role in ISR signaling 
[86]. Volatile organic compounds (VOCs) like 2,3-butanediol 
from B.	 subtilis contribute to ISR [88], and SA-related 
siderophores like pyochelin also support ISR [7].

d.	Induced	Systemic	Resistance	(ISR)
ISR is a plant-wide defense activated by non-pathogenic 
rhizobacteria. P.	�luorescens CHA0 induces ISR in tobacco against 
T.	basicola via cyanide and other elicitors [4], [97]. ISR enhances 
defense-related gene expression and enzyme production (e.g., 
peroxidases, chitinases) [59], [53]. Cross-protection effects 
have been seen where non-pathogenic P.	solanacearum strains 
induce resistance in potato [20].
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Figure-4:	Induced	Systemic	Resistance	(ISR)	Signaling	Pathway

e.	Hydrolytic	Enzyme	Production
Rhizobacteria produce enzymes like chitinases, glucanases, 
proteases, and cellulases to degrade fungal cell walls [22]. For 
instance, P.	 stutzeri YPL-1 inhibits F.	 solani via chitinase and 
laminarinase [35]. Genetic engineering has shown that 
chitinase genes from Serratia	 marcescens confer enhanced 
protection against R.	 solani when expressed in E.	 coli or 
Trichoderma spp. [35].

f.	Quorum	Sensing	and	Quenching	in	Biocontrol
QS is a communication system regulating gene expression by 
bacterial density. Pathogens like E.	carotovora use AHL-based 
QS for virulence [5]. Quorum quenching (QQ) disrupts this by 
degrading AIs. AHL lactonase AiiA from Bacillus species 
degrades AHLs, reducing virulence of pathogens [34]. Structural 
analogs such as �imbrolide inhibit QS receptors like LuxR in P.	
aeruginosa [67]. Natural inhibitors from edible plants suppress 
QS in P.	aeruginosa [75], while P.	putida IsoF and R.	erythropolis 
degrade AHLs, offering protection against pathogens [39], [14].

Figure-5:	Quorum	Sensing	(QS)	and	Quenching	(QQ)	in	Pathogen	Suppression

g.	Multi-Mechanistic	Action	and	Environmental	Modulation
Biocontrol agents use several mechanisms simultaneously, their 
dominance in�luenced by environmental factors. Siderophores 
are more effective in alkaline soils, whereas antibiotics are 
regulated by nutrient conditions [36], [55]. Compost addition 
enhances microbial antagonism and biocontrol potential [21], 
[32].

Figure-6:	Environmental	Factors	Modulating	Biocontrol	Ef�icacy

h.	 Volatile	 Organic	 Compounds	 (VOCs)	 and	 Secondary	
Metabolites
VOCs like HCN, phenazines, and sulfur compounds inhibit 
pathogens. P.	 �luorescens strains producing HCN reduce T.	
basicola infections [108]. Compounds such as dimethyl disul�ide 
and benzothiazole from Paenibacillus and Bacillus spp. suppress 
F.	oxysporum and other pathogens [87], [113].

Figure-7:	Volatile	Organic	Compounds	(VOCs)	in	Biocontrol

Synergistic	Interactions	with	Other	Microorganisms	
Rhizosphere	Colonization	and	Microbial	Interactions
Ef�icient rhizosphere colonization is crucial for biological 
control agents (BCAs) to protect plants from soilborne 
pathogens. Multi-strain BCAs (MSBCAs) enhance colonization, 
as shown by a �ive-strain bacterial consortium suppressing wilt 
in Nicotiana	 attenuata [Santhanam et al., 2019]. Diverse 
communities of bacteria, including Pseudomonas spp., improve 
survival and colonization, aiding in disease control such as 
bacterial wilt in tomatoes [Hu et al., 2016]. Interactions among 
microbes, such as between Trichoderma spp. and Bacillus	
velezensis, promote growth and bio�ilm formation, boosting 
colonization and pathogen suppression [10], [8].
Bio�ilm formation signi�icantly improves microbial colonization



	©	2025	AATCC	Review.	All Rights Reserved. 204.

Niyaj	Ahamad	et	al.,	/	AATCC	Review	(2025)

Table-2:	Multi-Strain	Biological	Control	Agents	for	Soil-Borne	Pathogens

by providing stability and resistance to environmental stress 
[8]. Multi-species bacterial consortia form stronger bio�ilms 
than single-species counterparts, resulting in better 
colonization and disease suppression [10]. Syntrophic 
interactions, where microbes cooperate to degrade substrates, 
further enhance colonization. For example, Azospirillum	
brasilense collaborates with sugar-degrading bacteria to access 
carbon sources, improving its survival and rhizosphere 
colonization [11]. Microbial motility—swimming, swarming, 
and gliding—facilitates migration and dispersal within the 
rhizosphere. Fungal mycelia can serve as "fungal highways," 
aiding the movement of rhizobia, such as using Phomopsis	
liquidambaris mycelia for root colonization [12]. Paenibacillus	
vortex transports non-motile fungal spores, enhancing 
microbial dispersal [13].

Resource	Competition	and	Antimicrobial	Production
Resource competition is a key mechanism by which BCAs 
suppress pathogens. They outcompete pathogens for nutrients, 
particularly root exudates. For instance, Pseudomonas spp. and 
non-virulent Ralstonia spp. inhibit Ralstonia	solanacearum by 
depleting resources [6], [10]. Siderophore production improves 
nutrient acquisition and limits iron availability to pathogens 
[16]. BCAs also produce antimicrobial compounds such as 
lipopeptides, phenazines, and chitinases that suppress 
pathogens. Interactions within microbial consortia stimulate 
these compounds, enhancing biocontrol [40], [44].

Application	Strategies	in	Agriculture
The use of rhizospheric bacteria, especially MSBCAs, is a potent 
strategy for managing soil-borne diseases. These bacteria 
suppress pathogens through competition, antimicrobial 
production, bio�ilm formation, and induced resistance.

Figure-8:	Multi-Strain	Biological	Control	Consortia	(MSBCAs)

Future	Prospects	and	Sustainable	Agriculture
The application of BCAs for soil-borne disease control offers an 
eco-friendly, sustainable alternative to chemical pesticides. 
BCAs promote environmental safety, reduce residue buildup, 
and limit pathogen resistance. Research should emphasize the 
mechanisms underlying BCA ef�icacy and their interaction with 
soil and plant microbiomes. Genomic and bioinformatic tools 
can aid in discovering novel BCAs and re�ining multi-strain 
consortia with complementary mechanisms.
Integrating BCAs into broader sustainable practices like crop 
rotation, organic farming, and use of resistant cultivars 
enhances their effectiveness as part of integrated pest 
management (IPM). Tailoring BCAs to environmental variables 
(soil pH, moisture, nutrients) and improving delivery systems 
will support their �ield-level deployment, translating lab 
success into agricultural resilience.

Conclusion
The role of rhizospheric bacteria as Biological Control Agents 
(BCAs) in the management of soil-borne diseases has become 
increasingly recognized for its potential in sustainable 
agriculture. The mechanisms through which BCAs suppress 
pathogens, including competition for nutrients, antimicrobial 
production, and the induction of systemic resistance, offer
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valuable alternatives to traditional chemical treatments. Multi-
strain BCAs (MSBCAs), which harness synergistic interactions 
between different microbial species, provide a promising 
strategy to enhance disease suppression and improve crop 
yields. While challenges remain, particularly in identifying the 
most effective microbial strains and understanding the complex 
dynamics between pathogens, BCAs, and plant hosts, the future 
of BCAs in agricultural practices looks promising. Continued 
research into the optimization and application of BCAs will be 
key to reducing reliance on chemical pesticides, improving food 
security, and promoting environmentally sustainable farming 
practices. By fostering a deeper understanding of microbial 
interactions and their role in soil health, we can move closer to 
achieving resilient agricultural systems capable of meeting the 
challenges posed by climate change, soil degradation, and 
increasing demand for food.
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