
Introduction
Since the Nobel laureate Richard P. Feynman presented the 
concept of nanotechnology in his seminal 1959 lecture, There's	
plenty	 of	 room	 at	 the	 bottom	 (Feynman, 1960), the �ield has 
witnessed amazing progress and revolutionary advancements 
[1]. Norio Taniguchi was the proponent of the term 
“Nanotechnology” [2]. Nanotechnology, derived from the Greek 
word Nano, meaning dwarf, refers to a scale reduction by a 

-9factor of 10 , making it a thousand times smaller than a micron. 
This nanoscale measurement, undistinguishable to the naked 
human eye [3], comprehends structures and materials at the 
atomic and molecular levels, creating the foundation of 
nanotechnology. In recent years, nanomaterials have expanded 
substantially in status across multiple �ields, including 
medicine, cosmetics, communication, electronics, energy 
production, agriculture, food processing, and textiles [4]. 
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	ABSTRACT	
Biotic	stresses	pose	a	signi�icant	challenge	to	global	agriculture,	severely	affecting	crop	productivity,	quality	and	food	security.	In	the	
present	day,	nanotechnology	has	emerged	as	a	promising	and	innovative	approach	to	mitigating	the	detrimental	effects	of	biotic	
stresses	on	crops,	offering	novel	strategies	for	enhancing	plant	resilience	and	protection.	The	utilization	of	nanomaterials,	including	
nanoparticles	and	nanocomposites,	has	shown	substantial	potential	in	enhancing	plant	resistance	against	various	biotic	stressors,	
for	 instance,	pathogens,	pests,	and	weeds.	Key	advancements	 in	 this	 �ield	 include	antimicrobial	nanoparticles,	precision	target	
delivery	systems	for	bio-pesticides,	and	nanoscale	sensors	that	enable	early	detection	of	plant	diseases.	Moreover,	nanotechnology	
grants	exclusive	opportunities	to	improve	the	ef�iciency	of	conventional	agricultural	practices	while	reducing	environmental	impact	
and	 fostering	 sustainable	 farming.	 However,	 challenges	 in	 this	 context	 include	 limited	 �ield	 level	 validation,	 variability	 in	
nanomaterial	behavior	under	diverse	agro-climatic	conditions	and	a	lack	of	long	term	impact	assessment.	Despite	these	limitations,	
this	work	contributes	by	consolidating	recent	innovations,	identifying	key	areas	of	application	and	emphasizing	the	integration	of	
nanotechnology	 into	precision	agriculture.	Nevertheless,	 contempt	 its	auspicious	aptitude,	 an	array	of	 encounters	and	ethical	
apprehensions	must	be	addressed	 for	 its	 accountable	application	 in	agriculture.	Main	 issues	 encompass	nanoparticle	 toxicity,	
ecological	 signi�icance,	 regulatory	 agendas,	 and	 public	 insight,	 all	 of	 which	 necessitate	 thorough	 appraisal	 to	 warrant	 the	
nonviolent	and	sustainable	amalgamation	of	nanotechnological	progressions.	In	the	era	of	precision	agriculture,	nanotechnology	
arises	as	a	transformative	invention	with	enormous	capability	to	rede�ine	biotic	stress	management	and	pointedly	advance	the	goal	
of	sustainable	global	food	production.

Keywords:	Biotic	stress;	Crop	protection;	Early	disease	detection;	Nanocomposites;	Nanoparticles;	Nanotechnology;	Nanoscale;	
Precision	agriculture;	Sensors
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These materials are demarcated as assemblies, aggregates, or 
agglomerates with at least one external dimension measuring 
less than 100 nanometers [5] or as substances possessing a 

2 -3 volume precise surface area (VSSA) greater than 60 m  cm [6]. A 
key distinguishing feature of nanomaterials is their 
exceptionally high surface area to volume ratio, which plays a 
crucial role in determining their bio-stimulant potential [7]. 
This asset also contributes to substantial modi�ications in their 
physicochemical actions equated to bulk materials [1,8].
Nanotechnology involves the study and manipulation of 
nanomaterials, which are de�ined by their dimensions ranging 
from 1 to 100 nanometers [2,4]. This de�inition encompasses a 
broad spectrum of both naturally occurring and engineered 
materials classi�ied as nanoparticles. Naturally occurring 
particles are found in different environmental forms, including 
volcanic ash and oceanic salt aerosols [9,10] (Fig.1). The 
nanoscale sizes of nanoparticles, united with their high surface 
area to volume ratio, enhance their reactivity, enabling ef�icient 
binding, absorption and transport of different compounds, 
including small molecule drugs, probes, DNA, proteins and RNA 
[11]. Beyond their enhanced surface area, nanoparticles exhibit 
unique physicochemical properties that distinguish them from 
their bulk counterparts (Fig. 2). 
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For example, gold (Au), which is traditionally inert and exhibits 
a golden color in bulk form, becomes reactive and appears red at 
the nanoscale. Similarly, titanium dioxide (TiO ) and zinc oxide 2

(ZnO), typically white in bulk form, become transparent when 
reduced to the nanoscale. Moreover, nanoparticles often display 
lower melting points and enhanced reactivity compared to their 
larger counterparts. These distinct properties have been 
extensively leveraged in nanotechnology, leading to 
advancements across numerous industries and the 
development of a vast array of innovative products and 
applications [12]. Additionally, nanomaterials can be generally 
categorized according to their shape and composition. They are 
classi�ied as either inorganic or organic nanoparticles based on 
their composition (Fig.3). These are also categorized 
structurally as anisotropic as displaying direction-dependent 
properties, and isotropic, having uniform properties in all 
directions [13].
Nanotechnology remains in its nascent stages, offering 
signi�icant potential to transform agricultural practices (Fig. 4). 
Its advancements have attracted microbiologists and 
researchers, encouraging their contributions to food safety 
through innovative strategies based on green chemistry 
principles [14] .  In 2021,  food insecurity impacted 
approximately 1.2 billion people worldwide. Nevertheless, its 
effects are not uniformly distributed across populations, and 
climate-related shock poses a signi�icant risk of further 
aggravating food insecurity and its associated health 
implications [15]. Agricultural productivity endures to be 
embarrassed by an array of biotic and abiotic factors, including 
weeds, diseases and insect pests signi�icantly reducing potential 
crop yields (Fig. 5). Empirical evidence indicates that pest 
infestations account for yield losses of approximately 25% of 
rice, 5-10% in wheat, 30% in pulses, 35% in oilseeds, 20% in 
sugarcane and 50% in cotton [16, 17].

Figure	1:	Different	examples	of	nanostructures	present	in	nature

Figure	2:	Properties	of	nanoparticles

Figure	3:	Types	of	nanomaterial	based	on	composition

Figure	4:	Application	of	nanotechnology	in	agriculture

Figure	 5:	 Comparison	 of	 nanotechnology	 in	 agriculture	 versus	 conventional	
agriculture

Legumes serve as crucial components of both human and 
animal diets, while also playing a fundamental role in cropping 
systems. Their contributions signi�icantly enhance soil health, 
promote sustainable agriculture, and support global 
environmental sustainability [18,19,20,21]. Legumes, 
belonging to the expansive plant family Fabaceae, which ranks 
as the third largest, encompass a vast array of over 20,000 
species cultivated across diverse agro-climatic zones and soil 
types [22]. These leguminaceous crops play pivotal roles in 
enhancing soil fertility through nitrogen �ixation, serving as a 
bene�icial disease deterrent for cereal and oilseed crops, and 
serving as staple foods [23,24,25]. They contribute signi�icantly 
to dietary nutrition by providing substantial amounts of dietary 
�ibers and minerals, essential amino acids, carbohydrates, and 
proteins. Furthermore, certain legumes hold considerable 
economic value as high-quality commercial export value food 
crops, collectively constituting 27% of the global crop
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production [26]. Grain legumes face vulnerability to a multitude 
of pathogens encompassing bacteria, fungi, viruses, nematodes, 
and parasitic plants, leading to substantial economic 
repercussions on a global scale [27]. Addressing the pressing 
need to meet the demand for grain legumes underlines the 
importance of emphasizing the adoption of innovative breeding 
and agronomic technological interventions for their genetic 
improvement. Additionally, the implementation of suitable 
policies and action plans is crucial to promote the cultivation of 
these crops [18].

2.	Nanotechnology	in	biotic	stress	management-	overview
Biotic stress, caused by pathogens, pests and weeds, 
signi�icantly reduces global agricultural productivity. 
Traditional approaches of pest and disease management, 
together with chemical pesticides and biological control agents, 
often face limitations such as environmental toxicity, resistance 
development, and reduced ef�icacy under changing climatic 
conditions. Nanotechnology presents a promising alternative,

Table	1:	Different	types	of	nanoparticles	used	in	agriculture

 offering novel solutions for ef�icient, targeted and sustainable 
biotic stress management by its different formulations and 
nanoparticles (Table 1, Fig. 6). 
Nanomaterials, including metal nanoparticles, nano-
formulated pesticides and nanocarriers for biocontrol agents, 
enhance plant defense mechanisms while minimizing ecological 
impact. Silver, copper, zinc oxide and other nanoparticles have 
demonstrated antimicrobial properties, effectively suppressing 
bacterial, fungal growth and bio-availability of biopesticides, 
ensuring controlled and prolonged activity against pathogens 
and pests. 
Beyond direct antimicrobial action, nanotechnology plays a 
crucial role in plant immunity enhancement. Engineered 
nanomaterials can induce systemic resistance in plants by 
modulating stress-responsive pathways, activating defense 
enzymes, and in�luencing hormonal signaling. Furthermore, 
nano-structured coatings and smart nanosensors enable early 
detection and precise management of biotic stress, ensuring 
timely interventions and reducing yield losses.

Figure	 6:	 Different	 formulations	 of	 nanomaterials	 in	 nanotechnology	 used	 in	
agriculture

2.1	Nanotechnology	for	disease	management	
The relevance of nanotechnology in the realms of plant disease 
m a n a g e m e n t ,  d i a g n o s t i c  a p p ro a c h e s ,  a n d  g e n e t i c 
transformations is nascent, representing an area that has only 
recently commenced exploration within the plant pathology 
literature [12]. Phytopathogens are projected to incur a 
substantial annual crop loss, estimated to range between 20 to 
30% [38]. This phenomenon is recognized as a formidable 
challenge to global food security, particularly in light of the 
escalating human population, as acknowledged by the United 
Nations in 2015 [39].

In addressing the formidable challenge posed by plant diseases, 
both traditional breeding and chemical interventions have 
proven insuf�icient [40,41]. The indiscriminate application of 
synthetic pesticides to manage plant biotic stresses has 
deleterious rami�ications on human and animal health, the 
environment, and exacerbates the emergence of resistance in 
numerous pathogens and pests [42]. Consequently, the search 
for more effective and environmentally safe agents to combat 
this danger to worldwide food safety has become imperative.
Nano-agrochemicals have recently emerged as a compelling 
avenue for enhancing crop yield and global food security, 
offering distinct recompenses over traditional products and 
methods. These advantages are intricately linked to heightened 
ef�iciency, abridged effort requirements, and lesser ecological 
toxicity [43,44,45]. Diverse nanomaterials have demonstrated 
multifaceted utility, including acting as antimicrobial agents 
capable of  directly impeding pathogenic virulence. 
Nanoparticles of metals, for instance silver (Ag NPs), copper 
(Cu/Cu O NPs), and zinc (ZnO/ nanocopper composite) have 2

exhibited potent antibacterial or antifungal capabilities against 
pathogens such as Fusarium	oxysporum, Phytophthora	infestans	
and 	 Xanthomonas	 perforans	 [46,47,48,49]. Moreover, 
nanomaterials job as elicitors, stimulating plant innate 
immunity to bolster resistance against biotic stresses. For 
instance, Ag NPs, Ag-silica hybrid complexes, and other metal 
NPs have been recognized as persuaders of plant immunity, 
leading to enhanced production of phenolic compounds, 
oxidative enzymes and up-regulation of systemic acquired 
resistance (SAR) marker genes [50,51,52]. 
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Furthermore, nanomaterials can act as carriers for active 
ingredients without directly contributing to the action. They 
operate as delivery systems for pesticides, micronutrients, and 
elicitors [39,53,54]. Investigations have veri�ied the potential of 
nanomaterials, including Fe O  NPs, TiO  NPs, and carbon-based 2 3 2

NPs at suitable concentrations to suppress pathogen infections 
and enhance plant growth, as evidenced in the model system of 
tobacco (Nicotiana	benthamiana) infected with Turnip mosaic 
virus (TuMV) [55]. Therefore, the detection of operative 
nanomaterials and the exploration of speci�ic application 
concentrations are crucial. Given the substantial potential of 
nano-agrochemicals in plant disease management, it is of 
utmost importance to rigorously assess their disease 
suppressive effects and establish safe and operative application 
approaches for different nanomaterials [56].

2.2.	Nanotechnology	for	insect	pest	management	
Insects, constituting over two-thirds of the known animal 
species worldwide, inhabit diverse environments. They exhibit 
a broad spectrum of feeding habits, targeting various plants, as 
well as crop plants, forest trees, medicinal plants and weeds. 
Additionally, insects pose threats to stored products such as 
food, leading to substantial losses and quality deterioration in 
storage facilities like godowns, bins and packages. In their 
pursuit of sustenance, insects can directly or indirectly harm 
plants and stored goods [17]. Traditional pest control methods 
involve the widespread application of commercially available 
pesticides in signi�icant quantities, resulting in an additional 
�inancial burden on crop production. The excessive use of 
pesticides not only contaminates water sources but also 
adversely impacts the surrounding environment. There is a 
critical necessity to minimize the use of pesticides to safeguard 
the environment and reduce costs in crop production [57]. A 
viable approach to achieving this objective is to explore non-
toxic substances that can effectively combat pests [58].

2.3	Nanotechnology	for	weed	management	
Weeds pose signi�icant threats to agriculture, competing for 
essential nutrients meant for food crops and thereby depriving 
the food crop of its rightful share. The conventional approach to 
address this issue involves their eradication. Nanotechnology 
presents a promising solution for weed control through the 
usage of nano-herbicides in an environmentally friendly way, 
leaving negligible toxic residues in the soil or the surrounding 
environment [59]. The Nano-herbicides, with their nano-sized 
particles, offer several advantages over conventional herbicides. 
Their small size facilitates thorough mixing with soil particles 
and effective elimination of all above-ground weeds. By 
incorporating speci�ic herbicides with nanoparticles, the nano-
herbicides target speci�ic receptors in weed roots. Upon 
penetration into weed roots, they inhibit the glycolysis pathway, 
leading to a shortage of energy-rich ATP molecules and 
ultimately causing the demise of weeds in a single application 
[58].
In recent years,  nanotechnology has appeared as a 
transformative strength in agriculture, exhibiting advanced 
solutions to improve crop protection and promote sustainable 
farming practices. Nanoparticle-based antimicrobial agents, 
encapsulated pesticides and nano biosensors have become key 
players in the quest for ef�icient, eco-friendly and targeted 
approaches to manage plant diseases, pests and weeds. This 
revolutionary shift towards nanotechnology in agriculture is 
driven by the unique properties exhibited by nanomaterials, 

which allow for precise control, increased ef�icacy and reduced 
environmental impact.

1.	Nanopesticides	based	on	antimicrobial	agents	
Nanomaterials (NMs) �ind various applications in plant 
protection, with a primary focus on their role as antimicrobial 
agents to enhance disease management and promote plant 
health. Amongst the widely investigated NMs with antimicrobial 
properties are metal nanoparticles (NPs), including Zinc (Zn), 
Copper (Cu), and Silver (Ag). Furthermore, carbon and polymer-
based nanomaterials have also been studied for their potential 
as antimicrobial agents in the context of plant protection (Table 
2). In the realm of nanoparticle synthesis, various fungi 
endowed with robust biocontrol capabilities are harnessed and 
notably, Trichoderma	 harzianum stands out as a widely 
employed species with documented applications in 
biopesticides and biofertilizers [60]. The facile growth 
requirements of T.	harzianum have signi�icantly expanded its 
utility within the realms of biotechnology and nanotechnology 
[61]. The Trichoderma genus, to which T.	harzianum belongs, 
has been recognized for its possession of NADH-dependent 
enzymes and NADH co-enzymes, particularly nitrate reductase, 
playing a pivotal role in the synthesis and capping of 
nanoparticles [62]. Zinc oxide nanoparticles (ZnO NPs) emerge 
as noteworthy entities in this context, having been documented 
for their utility as antimicrobial agents, particularly in impeding 
the growth of diverse fungi and bacteria [63]. Trichoderma	
harzianum was employed in nanotechnology to synthesize zinc 
oxide nanoparticles (ZnO NPs) for controlling Fusarium wilt in 
chickpea. The characterized ZnO NPs, produced with T.	
harzianum, displayed substantial inhibition of Fusarium	
oxysporum	 in	 vitro. In green house experiments, priming 
chickpea seeds with these nanoparticles occasioned a 90% 
reduction in disease incidence. The ZnO NP primed seeds 
enhanced antioxidant activity, leading to increased resistance 
against wilt. The study suggests that Trichoderma	harzianum 
assisted ZnO NPs could serve as an environment-friendly and 
effective nano-fungicide for managing Fusarium wilt in 
chickpea, with the potential for practical �ield application [64]. 
Similarly, Kumari et al. (2017) [48] documented the elevated 
bactericidal activity of silver nanoparticles (Ag NPs) derived 
from Trichoderma	 viridae in comparison to chemically 
synthesized Ag NPs. This heightened activity was ascribed to the 
surface coating provided by secondary antimicrobial 
metabolites originating from T.	 viridae	 [39]. Hashem et al. 
(2021) [65] conducted a study wherein they bio-synthesized 
selenium nanoparticles (SeNPs) utilizing the culture 
supernatant of Bacillus	megaterium ATCC 55000. The resultant 
green Se NPs exhibited notable antifungal ef�icacy against 
Rhizoctonia	 solani both in	 vitro and in	 vivo. This compelling 
�inding suggests the potential utilization of these Se NPs as an 
effective agent for the management of R.	solani diseases in faba 
bean cultivation. Elkhodary et al. (2023) [66] employed 
Streptomyces	 gancidicus for the biofabrication of biometallic 
ZnO B O nanoparticles (NPs), alongside monometallic ZnO NPs 2 3 

and B O NPs. The synthesized bimetallic ZnO-B O NPs showed 2 3 2 3 

remarkable antifungal effectiveness against Phytophthora	
irregulare, a causative agent of damping off in plants. Treatment 
with ZnO-B O  NPs resulted in a statistically signi�icant 2 3

reduction in the percent disease incidence (PDI) by 7.5%, 
accompanied by a remarkable increase in protection by 91.1%. 
Moreover, ZnO-B O  NPs induced a substantial augmentation in 2 3

total soluble protein levels in P.	irregulare-infected pea plants, 
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Table	2:	Nanoparticle	based	antimicrobial	agents	for	different	pathogens

underlining their potential as ef�icacious biological alternatives for the management of P.	irregulare in agricultural settings and 
reducing yield losses in pea. Abdelkhalek et al. (2023) [67] utilized the Rhizobium	leguminosarum bv. Viciae strain 33504-Borg 1, 
recognized for its nitrogen-�ixing capabilities, was used for the biofabrication of silver nanoparticles (AgNPs) aimed at mitigating 
bean yellow mosaic virus (BYMV) disease in faba bean. Results from green house trials demonstrated that foliar application of AgNPs 
on faba bean leaves, performed 24 hours prior to BYMV inoculation, elicited plant resistance, leading to reduced disease severity and 
diminished virus accumulation. Furthermore, this treatment exhibited positive effects on plant health, as evidenced by enhanced 
growth parameters, elevated levels of peroxidase (POX) and polyphenol oxidase (PPO) enzymes and decreased concentrations of 
oxidative stress markers, for instance, hydrogen peroxide (H O ) and malondialdehyde (MDA).2 2

2.	Nanoparticle-encapsulated	pesticides
Biological biocides exhibit considerable promise for mitigating 
plant biotic stresses and promoting developmental vigor, 
however, their intrinsic instability and rapid degradation pose 
challenges. Biological control agents (BCAs) represent an 
environmentally friendly strategy that effectively inhibits plant 
diseases and enhances crop productivity. In response to the 
escalating demand for BCAs, research on encapsulation has 
witnessed a notable upswing in recent decades. Encapsulation, 
delineated as the process by which an active core is physically 
incorporated into a matrix structure and subsequently 
stabilized through chemical means, stands as a pivotal method 
in overcoming the inherent limitations of free-form 
formulations. These encapsulation formulations offer a viable 
avenue for ameliorating the challenges associated with 
biological biocide applications. Notably, they enhance the 
ef�icacy of BCAs by extending shelf-life and facilitating the 
controlled release of bio-active components. Adopting an 
innovative approach, encapsulation emerges as a promising 
platform for the regulation of biotic stressors, particularly plant 
pathogens. Among the key polymers integral to this 
encapsulation paradigm, chitosan and alginate stand out, 
exhibiting signi�icant potential in con�ining and preserving 
BCAs. This nuanced strategy not only addresses the logistical 
constraints of biological biocide utilization but also emphasizes 
its capacity as a dynamic device for sustainable plant pathogen 
management [42]. The encapsulation process is characterized 
as a technique that involves enclosing substances within an 
inert material in miniature dimensions at the nanoscale [70].
In an investigation, chitosan thiamine nanoparticles (CNPs) 
were employed to induce defensive responses against Fusarium	
oxysporum f. sp. ciceris (Foc) in chickpeas [8]. Foc, a prominent 
soil-borne pathogen, is known to cause severe yield losses, 
reaching up to 100% [71]. The utilization of CNPs resulted in 
notable enhancements in both non-enzymatic and enzymatic 
antioxidants, accompanied by increased lignin deposition 
within the vascular bundles of chickpea stem tissues, compared 
to the control [8,72].
Chitosan nanoparticles (CNPs) have emerged as pivotal 
contributors to abating diverse stress circumstances in plants, 
orchestrating a spectrum of defense retorts that encompass the

induction of pathogen-related proteins, phytoalexins, 
proteinase inhibitors, antioxidants, callose deposition, lignin 
deposition and other relevant mechanisms. This multifaceted 
role positions CNPs as an environmentally friendly alternative 
to chemical agents, offering a sustainable strategy for 
preventing seed infestations by many pests. The �indings 
emphasize the potential of chitosan thiamine nanoparticles in 
bolstering the resilience of chickpeas against the detrimental 
impact of Fusarium	oxysporum f. sp. ciceris, providing insights 
into an ecologically sound approach for agricultural pest 
management [71]. Moreover, [47] observed that the utilization 
of biosynthesized silver nanoparticles (Ag NPs) at a 

-concentration of 100 μg ml ¹ resulted in a substantial reduction 
of chickpea Fusarium wilt incidence by 73.33%. This ef�icacy 
surpassed that of the commercial fungicide control (CuOCl), 
which exhibited a reduction of 26.67%, indicating an enhanced 
effectiveness of 46% [39].

 Abdallah et al. (2022) [73]conducted an investigation aimed at 
elucidating the in�luence of varying concentrations of MgO 
nanoparticles (MgONPs) on mung bean plants and evaluating 
the commonness of Fusarium	 solani (F.	 solani) and Fusarium	
oxysporum (F.	oxysporum) under in	vivo conditions. Moreover, 
the study sought to delineate the consequential effects on soil 
health. In	vitro investigations revealed that MgONPs exhibited 
inhibitory properties against fungal growth. Transitioning to 
green house conditions, the strictness of disease induced by F.	
solani experienced a notable reduction, decreasing from 
approximately 44% to 25%. Similarly, the impact of F.	
oxysporum diminished, with disease severity decreasing from 
39% to 11.4%.
In current centuries, there has been a growing utilization of 
various nanomaterials for the progress of revised release 
systems of herbicides. This trend accentuates the necessity to 
evaluate the competence of these nanocarriers in weed control 
and their potential residual effects on susceptible crops. Newly, 
the investigation conducted by [74] highlighted the signi�icance 
of nanotechnology in herbicide application, speci�ically focusing 
on atrazine-loaded polycaprolactone (PCL) nanocapsules for 
weed control in soybean cultivation. Nanoencapsulation of 
atrazine progresses pre-emergence herbicidal activity against 
Bidens	pilosa (B.	pilosa), a common weed, without exacerbating
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long-term residual effects on soybean plants. The �indings 
suggested that, when respecting recommended intervals, this 
environmentally friendly nanoatrazine formulation has the 
potential to ef�iciently control weeds, reduce environmental 
contamination, and minimize herbicide content in the soil. The 
use of PCL, a safe and biodegradable polymer, further supports 
the eco-friendly nature of this nanotechnology application in 
soybean cultivation [74].
In the current market, chitosan combined with either 
tripolyphosphate or glutaraldehyde nanoparticles is readily 
available for the encapsulation of the biopesticide PONNEEM. 
The encapsulation process has been observed to diminish the 
antifeedant ef�icacy of PONNEEM against Helicoverpa	armigera 
across all tested concentrations (0.1%, 0.2%, and 0.3%). 
Remarkably, the larvicidal effectiveness of the nanoparticles, 
with the exception of CS/GLA 0.2%, surpasses that of the 
nonencapsulated PONNEEM [75].
Callosobruchus	 maculatus (F.) stands as a prominent pest 
affecting leguminous grains such as green gram, cowpeas, 
lentils, and black gram [76,77,78,79,80,81]. Zinc oxide 
nanoparticles were biogenically synthesized utilizing the leaf 
extract of Pongamia	pinnata. The assessment of their pesticidal 
ef�icacy against Callosobruchus	maculatus, a cowpea weevil [82] 
focusing on mortality rates and alterations in midgut digestive 
enzyme activities. The application of zinc nanoparticles resulted 
in a dose-dependent reduction in both the quantity of eggs laid 
by C.	maculatus and the subsequent hatchability of its adults. 
Furthermore, the treatment with nanoparticles exhibited a 
discernible impact on the growth and developmental stages of C.	
maculatus, spanning larval, pupal, and total developmental 
phases [75].
Among the highly effective nanomaterials, aluminosilicate 
nanotubes stand out. These nanotubes can serve as ef�icient 
carriers for loading garlic essential oil onto nanoparticles. The 
incorporation of garlic essential oil onto nanoparticles has 
demonstrated ef�icacy against Tribolium	castaneum	Herbst	[83].
Moreover, NiO NPs nanoparticles created with an aqueous 
extract derived from Rauvol�ia	 serpentine leaves were also 
investigated for their ef�icacy against Callosobruchus	maculatus 
infestation in Vigna	 mungo. The �indings indicated a dose-
dependent impact on the treated insects, manifesting in 
decreased fecundity and extended developmental periods [84].

3.	Nanobiosensors	for	early	detection	
Nanosensors represent potent instruments for discerning 
nutrient insuf�iciency, toxicity and diseases in both plant and 
animal organisms. Additionally, they play a crucial part in 
monitoring the health status of plants, ensuring the quality and 
safety of food products. The integration of nanosensors 
contributes to the enhancement of agricultural production by 
optimizing input ef�iciency, thereby minimizing losses in 
essential resources such as irrigation, fertilizers and pesticides 
[14]. Nanosensors encompass chemical or mechanical sensing 
devices designed to detect speci�ic substances or quantify 
physical attributes at a nanoscale, wherein at least one sensing 
dimension does not exceed 100 nm. These sensors can be 
categorized broadly as ocular nanosensors, electromagnetic 
nanosensors, and mechanical or vibrational nanosensors 
[85,86]. Timely and dependable identi�ication of plant 
pathogens is vital for monitoring crop health, curtailing disease 
dissemination and implementing ef�icient management 
strategies. 

Various methods, such as visual symptom inspection, 
serological assays, and DNA-based pathogen detection, have 
been utilized for diagnosing crop diseases. However, these 
techniques exhibit limitations, particularly in detecting 
asymptomatic stages, involving time-intensive processes, 
expensive equipment, susceptibility to false negatives owing to 
cross-contamination and dependence on professional 
expertise. Moreover, their application in farmers' arenas is 
restricted. 
To  surmount  these  chal lenges ,  recent  progress  in 
nanotechnology have facilitated the expansion of small 
processes, leading to the creation of biosensors for identifying 
pathogenic incidence in plants. These biosensors utilize 
antibodies, DNA and volatile complexes as sensing receptors. 
Consequently,  nanobiosensor-dependent technology 
introduces a novel dimension to plant disease diagnostic 
systems, offering non-destructive, minimally hostile, pro�itable 
and user-responsive solutions with enhanced capabilities for 
detection limits, sensitivity, uniquely and on-site identi�ication 
of pathogens of plants [87].

Types	of	Nanobiosensors
1.	 Fluorescence	 Resonance	 Energy	 Transfer	 (FRET)	
Nanosensor:	 A FRET nanosensor operates on �luorescence 
resonance energy transfer, utilizing a donor and acceptor dye for 
energy transfer within 1-10 nm [88]. A substrate-speci�ic 
binding domain alters �luorophore distance or orientation, 
causing measurable energy transfer changes [89]. It has been 
applied in biosensing, such as diagnosing Colletotrichum	
lindemuthianum using �luorescent bioreceptors [27].

2.	Surface	Enhanced	Raman	Scattering	(SERS)	Nanosensor:	
SERS is a powerful spectroscopy tool that analyzes at the 
molecular level employing metal nanoparticle-coated surfaces 
to enhance Raman signals [90]. It operates through 
electromagnetic and chemical effects, amplifying signals up to 

1410  times [91]. Gold and silver nanoparticles allow SERS-based 
sensors for pathogen identi�ication in plants [92,87].

3.	 Electrochemical	 Nanosensors	 (ECN):	ECN offer a highly 
sensitive, cost-effective method for early crop pathogen 
detection by converting biological events into electrical signals. 
Utilizing nanomaterial-based electrodes, ECN enhances the 
detection of redox and ion species in plants. They have been 
applied for �ield diagnostics, including micro�luid microarrays 
for identifying fungal pathogens like Botrytis	spp. in crops like 
faba bean and lentil [93,27].

4.	Piezoelectric	Nanosensor	(PZN):	PZNs convert mechanical 
and bio�luid energy into electrical signals, enabling real-time 
pathogen monitoring in plants. They detect mass changes from 
biomolecular interaction, such as antigen-antibody binding, 
utilizing Quartz Crystal Microbalance (QCM). This technology 
provides precise pathogen detection through frequency shifts in 
quartz crystals [87].
Additionally, [14] demonstrated that a gold nano electrode 
combined with copper nanoparticles provides exceptional 
accuracy in quantifying salicylic acid levels in oilseeds infected 
by Sclerotinia	sclerotiorum. Lau et al. (2017) [94] developed a 
robust point of care diagnostic method integrating surface 
boosted Raman scattering (SERS) with recombinase 
polymerase ampli�ication (RPA) for the precise detection of 
multiple plant pathogens, including Pseudomonas	 syringae, 
Botrytis	cinerea, and Fusarium	oxysporum	[95].
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4.	Nanofertilizers	for	nutrient	management
The soil serves as the primary reservoir from which plants 
acquire both macronutrients and micronutrients [96]. Despite 
the increased crop yields resulting from the green revolution 
and modern farming practices, there has been a decline in vital 
micronutrients available for plant growth and development in 
the soil [97]. Consequently, there is a pressing need to enhance 
study tests for micronutrients, aiming for methods that are cost-
effective, sensitive and capable of providing three-dimensional 
and consecutive insights into the bioavailable nutrient pool in 
both soil and plants [96].
To address this challenge, nanoformulations containing 
micronutrients offer a potential solution. These formulations 
can be employed through foliar or soil application, facilitating 
the availability of micronutrients for uptake by plant roots and 
thus facilitating the enhancement of soil health and vigor 
[98,99]. This approach holds promise for ensuring an adequate 
supply of essential nutrients to plants, mitigating the adverse 
effects of micronutrient de�iciencies caused by changes in 
agricultural practices (Table 3).
Nanoformulations of iron demonstrate positive impacts on 
different plants, for instance, an elevation in chlorophyll levels 
and mitigation of chlorotic signs related to iron de�iciency in 
soybeans [100]. Furthermore, these formulations contribute to 
the enhancement of growth parameters, yield metrics, and spike 
eminence, including 1000-grain weight, biological yield, grain 
yield, and grain protein content in wheat [101]. In the case of 
black-eyed peas, the application of iron nanoformulations 
results in a substantial increase of 47% in the number of pods 
per plant, 7% in the weight of 1000 seeds, 34% in the iron 
content in leaves, and 10% in chlorophyll content compared to 
control plants [102].
Likewise, manganese nanoparticles exhibit an encouraging 
in�luence on the yield and growth of mung beans (Vigna	radiata) 
and enhance photosynthetic processes [103]. Additionally, zinc 
oxide nanoparticles, when applied at low concentrations, have

been shown to promote the growth of mung beans and Cicer	
arietinum seedlings [104]. These �indings underline the 
potential of nanomaterials in positively in�luencing the 
physiological and biochemical aspects of different crops, 
thereby enhancing their overall productivity and nutritional 
content [99]. Recently, alginate/chitosan nanoparticles have 
been employed to augment the growth and developmental 
features of soybean. The �indings indicate that the utilization of 
alginate/chitosan-based nanoparticles leads to a substantial 
improvement in both root and shoot length, showcasing their 
noteworthy potential in alleviating the impact of drought stress 
[105,106].
Hashem et al. (2021) [65] investigated the in�luence of selenium 
nanoparticles (Se-NPs) on the growth and development of Vicia	
faba plants. The study revealed that Se-NPs served as potent 
growth promoters for Vicia	 faba, in�luencing different 
morphological, metabolic, and genetic parameters. Notably, the 
application of Se-NPs led to a substantial enhancement in the 
total chlorophyll content and carotenoids when compared to 
control plants. The most favorable outcomes were observed 
when Se-NPs were administered through soaking and foliar 
spraying.
Krutyakov et al. (2022) [107] investigated the impact of foliar 
treatments employing aqueous dispersions of silver 
nanoparticles stabilized by polyhexamethylene biguanide 
hydrochloride on legume-Rhizobium symbiosis, a crucial factor 
in�luencing soil nitrogen assimilation and soybean yield. The 
investigation revealed that application of low doses of silver 
nanoparticles signi�icantly enhanced the number of root 
nodules and subsequently increased soybean yield. The 
experimentally determined biological ef�icacy of silver 
nanoparticle dispersals was attributed to heightened enzymatic 
activity of peroxidases and polyphenol oxidases in the aerial 
portions of plants, elucidating the mechanisms behind the 
positive effects on legume-Rhizobium symbiosis and soybean 
productivity.

Table	3:	Effect	of	different	nanoparticles	and	nanofertilizers	on	crop	growth

Future	Prospect
The integration of nanotechnology in legume farming holds 
immense potential for transforming biotic stress management 
in the coming decades. Future research should focus on 
developing crop-speci�ic nanomaterials that offer targeted 
protection against key pathogens, pests and parasitic weeds 
affecting legumes. Advancements in nano-enabled smart 
delivery systems for biopesticides and RNA interface (RNAi) 
based technologies may signi�icantly enhance plant defense 
mechanisms while minimizing environmental toxicity. There is 
also a need to explore the synergistic effects of combining 
nanotechnology with other modern approaches, such as gene 
editing (e.g., CRISPR), microbial consortia and integrated pest 
management (IPM), to create holistic and sustainable solutions.

Long term �ield trials across diverse agro-ecological zones will 
be critical to validate lab-drawn results and ensure scalability. 
Moreover, the development of eco-friendly, biodegradable 
nanomaterials can address current concerns related to 
nanoparticle toxicity and ecological impact. In addition, the 
incorporation of nanosensors and digital agriculture tools in 
legume farming can revolutionize real-time stress monitoring, 
early disease detection and precision intervention. Policy 
support, farmer awareness programs and robust regulatory 
frameworks will also play pivotal roles in ensuring the 
responsible and widespread adoption of nanotechnology in 
agriculture. With continued innovation and interdisciplinary 
col laborat ion ,  nanotechnology is  poised to  play  a 
transformative role in securing legume productivity and food 
security under increasing biotic stress pressures.
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Conclusion	
In conclusion, the utilization of nanotechnology for biotic stress 
management in leguminous crops represents a groundbreaking 
avenue with considerable potential for revolutionizing 
agricultural practices, offering innovative solutions that address 
the complex challenges related to pests, diseases, weeds, and 
nutrient de�iciencies. The ability to precisely target and 
modulate plant responses at the nano-scale offers a level of 
precision and ef�iciency that traditional methods struggle to 
achieve. Moreover, the deployment of nanotechnological 
interventions not only contributes to bolstering crop resistance 
but also holds promise in mitigating environmental impacts 
associated with conventional pest and pathogen control 
measures. By promoting sustainable farming practices, 
nanotechnology aligns with the imperative to address global 
food security challenges while minimizing adverse ecological 
consequences. However, the journey towards incorporating 
nanotechnology into leguminous crop management is not 
without challenges. Concerns surrounding nanoparticle 
toxicity, environmental persistence, and regulatory frameworks 
necessitate careful consideration to safeguard the harmless and 
accountable submission of these innovations. In essence, the 
multifaceted application of nanotechnology in biotic stress 
management for leguminous crops holds great promise for 
sustainable agriculture. By leveraging the unique capabilities of 
nanoparticles, we can advance precision farming, reduce 
environmental impact, and contribute to global food security. 
Continued research, coupled with thoughtful regulation and 
widespread adoption, will be instrumental in realizing the full 
potential of nanotechnology to transform leguminous crop 
cultivation into a resilient, ef�icient, and sustainable endeavor 
for the future.
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