

27 April 2025: Received 16 June 2025: Revised 24 June 2025: Accepted 26 July 2025: Available Online

https://aatcc.peerjournals.net/

Review Article Open Access

A Review-Carbon Farming: Transforming Agriculture for Climate Resilience

Kavita Solanki¹, Jyostnarani Pradhan*², Hemlata Singh², Jaya Sinha³, Aman Jaiswal⁴, Geeta Kumari⁴, Shiv Nath Suman⁵, Neeraj⁶

ABSTRACT

Carbon farming has emerged as a transformative approach to agricultural sustainability, aiming to sequester carbon dioxide from the atmosphere while enhancing soil health and agricultural productivity. This article provides an overview of carbon farming practices and their scientific underpinnings, highlighting key techniques such as cover cropping, no-till farming, agroforestry, and biochar application. Drawing upon scientific literature, we discuss the benefits and impacts of carbon farming on climate change mitigation, soil fertility, and ecosystem resilience. Despite its promise, carbon farming faces challenges related to technological, knowledge, and socio-economic barriers. Addressing these challenges requires supportive policies, financial incentives, and capacity-building efforts. Embracing carbon farming holds immense potential to foster climate-resilient agriculture while advancing global climate change mitigation goals. In addition to environmental benefits, carbon farming can yield significant economic advantages for farmers. By participating in carbon credit markets, farmers can earn additional income for implementing sustainable practices that sequester carbon. This financial incentive encourages the adoption of carbon farming methods, which can further bolster farm profitability.

Keywords: Carbon Farming, Agriculture, Soil Carbon Sequestration, Climate Change Mitigation, Sustainable Agricultural Practices, Climate Resilience, Mitigation and Adaptation

INTRODUCTION

Agriculture stands at the crossroads of climate change mitigation and adaptation. As the world confronts the growing impacts of climate change[1], innovative approaches are emerging to mitigate greenhouse gas emissions[2] and build resilience in food production systems[3]. Among these, carbon farming has gained prominence as a sustainable agricultural practice aimed at sequestering carbon dioxide from the atmosphere[4] while fostering agricultural productivity and resilience[5].

Agriculture stands at the crossroads of climate change mitigation and adaptation. As the world confronts the growing impacts of climate change [1], innovative approaches are emerging to mitigate greenhouse gas emissions [2] and build resilience in food production systems [3]. Among these, carbon farming has gained prominence as a sustainable agricultural

*Corresponding Author: Jyostnarani Pradhan

DOI: https://doi.org/10.21276/AATCCReview.2025.13.03.484 © 2025 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

practice aimed at sequestering carbon dioxide from the atmosphere [4] while fostering agricultural productivity and resilience [5].

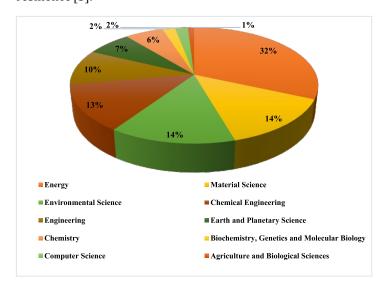


Fig.1. Pie chart showing the percentage distribution of articles related to Carbon Capture and Utilization (CCU) by subject areas [6]

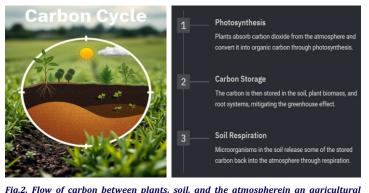
¹Department of Agriculture, Govt. Madhav Science College, Ujjain, Madhya Pradesh-456010, India

²Department of Botany, Plant Physiology and Biochemistry, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur-848125, India

³Department of Farm Machinery and Power Engineering, College of Agricultural Engineering and Technology, RPCAU, Pusa, Samastipur, Bihar-848125, India

⁴Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur-848125, India

⁵Department of Soil Science, Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur-848125, India ⁶Department of Horticulture, Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur-848125, India


By implementing practices such as cover cropping, agroforestry, reduced tillage, and improved soil management, carbon farming enhances the organic matter content in soils, thereby improving soil fertility and water retention [7]. This not only boosts crop yields but also increases the soil's ability to act as a carbon sink, which plays a pivotal role in mitigating climate change [8]. Additionally, carbon farming practices contribute to biodiversity conservation and can decrease dependence on chemical inputs, further supporting sustainable agricultural systems [9]. The integration of carbon farming into global agricultural policies could be a significant step forward in achieving both climate goals and ensuring food security in the face of a changing climate [10].

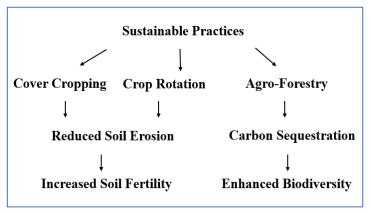
Role of carbon farming in climate change mitigation and agricultural sustainability

Carbon farming encompasses a suite of agricultural practices explicitly designed to enhance carbon sequestration in soil and vegetation. By leveraging natural processes, such as photosynthesis and decomposition, carbon farming seeks to draw down atmospheric carbon dioxide and store it in agricultural ecosystems [2]. These practices not only help combat climate change by lowering greenhouse gas emissions [8] but also offer multifaceted benefits, including improved soil health [7], enhanced biodiversity [9], and increased agricultural productivity [5].

Fig. 2. Flow of carbon between plants, soil, and the atmospherein an agricultural ecosystem. The diagram shows the processes of photosynthesis, carbon storage, and soil respiration Moreover, carbon farming has the potential to improve resilience against climate variability by fostering healthier ecosystems that can better withstand extreme weather events, such as

droughts and floods [3]. Integrating practices like cover cropping and agroforestry can improvesoil moisture retention capacity and reduce erosion, thereby promoting the long-term sustainability of agricultural systems [11]. Additionally, carbon farming can create economic opportunities for farmers through carbon credits, which incentivize practices that contribute to climate change mitigation [12]. This holistic approach not only aids in combating climate change but also fosters a more sustainable and productive agricultural landscape. As farmers adopt carbon farming practices, they become active participants in the global effort to combat climate change while simultaneously improving their livelihoods and the health of the ecosystems they depend on [10].

rig.z. Flow of carbon between plants, soil, and the atmospherein an agricultural ecosystem. The diagram shows the processes of photosynthesis, carbon storage, and soil respiration


Carbon Cycle in Agriculture CO2 in Atmosphere ↓ Photosynthesis ↓ Plant Growth ↓ Organic Residues ↓ Decomposition ↓ Carbon Stored in Soil

Key Practices and Techniques in Carbon Farming

- Cover Cropping: Introducing cover crops during fallow periods can significantly enhance soil organic carbon levels. Legume cover cropsnot only fix atmospheric nitrogen but also enrich soil carbon content through root biomass and organic matter decomposition [13]. These practices enhance soil structure, boost water retention, and reduce erosion, all of which are essential for preserving soil health and supporting agricultural productivity. Moreover, the use of cover crops can suppress weed growth, minimizing the need for chemical herbicides and promoting a more sustainable farming system. As the cover crops decompose, they release nutrients back into the soil, supporting the growth of subsequent cash crops and enhancing overall fertility.
- No-till Farming: Avoiding intensive tillage practices helps preserve soil structure and organic carbon stocks. Studies have shown that transitioning to no-till or reduced tillage systems can enhance soil carbon sequestration while reducing greenhouse gas emissions associated with soil disturbance [14]. These conservation tillage practices promote the development of soil aggregates, which improve water infiltration and retention, reducing runoff and erosion. Healthier soil structure also fosters a more diverse soil microbiome, which plays a critical role in nutrient cycling and overall soil fertility. As a result, farmers can experience improved crop yields over time without the need for excessive chemical fertilizers.
- Forest Management: Healthy forests are essential for absorbing and storing carbon dioxide emissions from various sources, making them vital for greenhouse gas (GHG) sequestration [15]. Carbon offsets can be generated through several strategies, including preventing deforestation and ensuring permanent land conservation, as well as engaging in reforestation and replanting initiatives [16]. Agroforestry systems not only sequester carbon but also offer additional income sources for farmers [17]. Deforestation contributes significantly to global greenhouse gas levels, accounting for 15-20% of the increase [18]. Effective forest management strategies to combat this issue include thinning forests, selectively harvesting trees, promoting natural regrowth, planting new trees, and applying fertilizers to enhance forest productivity sustainably [19].

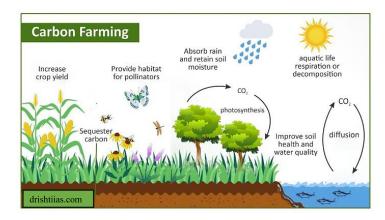
- **Biochar Application**: Biochar is a carbon-rich, solid material with a high surface area and enhanced nutrient content, known for its slow nutrient release, produced through the pyrolysis of various organic materials. Its sustainable application in soil can boost plant growth by improving nutrient use efficiency, fostering beneficial plantmicrobe interactions, and offering plant protection. Utilizing biochar as a soil amendment enhances soil fertility and carbon sequestration. Biochar, a form of charcoal produced from biomass pyrolysis, can persist in soils for centuries, effectively sequestering carbon while improving soil structure and nutrient retention [20].
- Conservation Buffers: Establishing buffer strips of vegetation along waterways can reduce runoff, improve water quality, and enhance carbon sequestration. These buffers provide habitat for wildlife and help stabilize soil, thus increasing the overall health of agricultural landscapes [3]. By filtering sediments and nutrients from surface runoff, buffer strips play a critical role in protecting aquatic ecosystems and maintaining the quality of water sources. The vegetation in these strips absorbs excess nitrogen and phosphorus, which are often responsible for water pollution and eutrophication in lakes and rivers. This natural filtration process can lead to cleaner water for irrigation and drinking purposes, benefiting both farmers and local communities.
- **Precision Agriculture**: Leveraging technology and datadriven practices can optimize the use of water, fertilizers, and pesticides, reducing waste and improving crop productivity. Precision agriculture can lead to better carbon management in farming systems by improving efficiency and reducing the overall carbon footprint [21]. By employing tools such as satellite imagery, drones, and soil sensors, farmers can obtain real-time data on crop health, soil conditions, and environmental factors. This information allows for targeted interventions, ensuring that resources are applied only where and when they are needed.
- Integrated Nutrient Management: Combining organic and inorganic fertilizers can improve soil health and fertility while increasing the soil's carbon storage capacity. This approach encourages the use of compost, manure, and cover crops, which contribute organic matter to the soil [11]. Incorporating inorganic fertilizers judiciously complements these benefits by providing readily available nutrients that support plant growth, particularly during critical growth stages. This balanced fertilization strategy reduces the risk of nutrient deficiencies and promotes optimal plant health.
- Wetland Restoration: Restoring wetlands or creating new wetland areas can sequester large amounts of carbon due to their high organic matter content. Wetlands act as carbon sinks, trapping and storing carbon dioxide while also providing crucial habitat for wildlife and improving water quality [22].
- Improved Grazing Practices: Implementing rotational grazing and managing livestock density can enhance soil carbon sequestration in pasture lands. These practices help maintain healthy grasslands by promoting root growth, increasing soil organic matter, and reducing soil compaction [23].Rotational grazing allows pastures to rest and recover between grazing periods, which encourages the growth of deep-rooted grasses. These grasses are essential for carbon storage, as their extensive root systems capture and store carbon in the soil.

Additionally, the organic matter from decomposed roots and plant material contributes to a richer soil profile, improving overall soil health and fertility.

Benefits of carbon farming in agriculture

Carbon farming has significant potential to transform agricultural landscapes while meeting climate change mitigation and adaptation goals. By sequestering carbon in soils and vegetation, these practices help reduce atmospheric greenhouse gas concentrations, contributing to climate change mitigation. Furthermore, carbon farming enhances soil health, improves water retention, and promotes nutrient cycling, thereby increasing agricultural resilience to climate variability and extreme weather events. Carbon farming offers a range of benefits that enhance both agricultural productivity and environmental sustainability [24]. Here are some of the key advantages:

Carbon Sequestration:


 Carbon farming practices effectively capture and store atmospheric carbon dioxide in soils and vegetation, playing a vital role in climate change mitigation [4]. This helps to reduce greenhouse gas concentrations and combat global warming.

Improved Soil Health:

 Practices like cover cropping, reduced tillage, and the application of organic amendments boost soil organic matter and improve soil structure, resulting in healthier soils. Healthier soils improve nutrient availability and microbial activity, which is vital for plant growth [7].

Enhanced Water Retention:

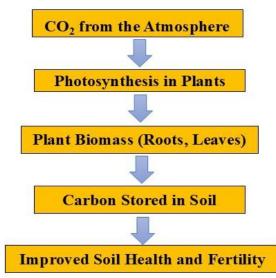
• Carbon-rich soils have improved water-holding capacity, reducing the need for irrigation and helping crops withstand drought conditions [3]. This is particularly important in regions facing increased climate variability and extreme weather events.

Increased Biodiversity:

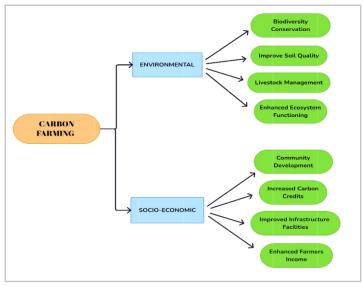
 By promoting diverse cropping systems and agroforestry, carbon farming enhances habitat diversity, supporting beneficial organisms and pollinators. This biodiversity is essential for resilient ecosystems and sustainable agricultural systems [9].

Economic Opportunities:

 Farmers can earn carbon credits by adopting carbon farming practices, creating new income streams through participation in carbon markets [12]. This financial incentive encourages more farmers to engage in sustainable practices.


Resilience to Climate Change:

 Carbon farming enhances the resilience of agricultural systems to climate variability and extreme weather conditions. Healthy soil can absorb and retain moisture better, reducing the impact of droughts and floods on crop production [11].


Reduction in Input Costs:

• Improved soil health can lead to reduced reliance on synthetic fertilizers and pesticides, lowering production costs for farmers. Healthier soil can provide nutrients more efficiently, leading to cost savings over time [5].

CARBON SEQUESTRATION PROCESS

 ${\it Fig. 3. Diagram \, depicted \, the \, process \, of \, Carbon \, Sequestration}$

 $Fig. 4. \ The \ Economic \ and \ Socio-economic \ benefits \ of \ Carbon \ Farming$

Challenges in carbon farming:

While carbon farming offers promising solutions for climateresilient agriculture, several challenges need to be overcome to fully realize its potential. These include technological barriers, knowledge gaps, and socio-economic constraints [4]. Additionally, the scalability and adoption of carbon farming practices require supportive policies, financial incentives, and capacity-building initiatives to empower farmers and stakeholders [2].

- **1. Lack of Awareness and Education:** Many farmers are not familiar with carbon farming practices or their benefits. This lack of knowledge can hinder adoption and implementation [25]. Education and outreach programs are crucial for raising awareness and showcasing the potential benefits of these practices. These programs can provide farmers with essential information about sustainable agricultural techniques, enabling them to make informed decisions regarding their land management practices [26].
- **2. Economic Barriers:** Initial investment costs for adopting carbon farming practices, such as cover cropping or agroforestry, can be high. Many farmers may be reluctant to invest without guaranteed short-term financial returns, particularly in regions with tight profit margins [12]. This hesitation is often exacerbated by the uncertainty surrounding the carbon credit market, where fluctuating prices can make it difficult for farmers to predict potential income from carbon credits [27].
- **3. Financial Resources:** Small-scale farmers in developing countries frequently lack the financial resources necessary to invest in sustainable land management practices and environmental services. This financial barrier limits their ability to adopt innovative techniques that could improve soil health, increase crop yields, and enhance resilience to climate change [28]. Additionally, limited access to credit and financial support hinders their capacity to implement necessary infrastructure improvements, such as irrigation systems or agroforestry initiatives [29].
- **4. Policy and Regulatory Challenges:** Inconsistent or lack of supportive policies and regulations can impede the development of carbon farming initiatives. Clear guidelines and supportive frameworks are necessary to encourage farmers to adopt sustainable practices [10]. Without a stable policy environment, farmers may be hesitant to invest time and resources in carbon farming, fearing that changes in government priorities could undermine their efforts [30].
- **5. Market Uncertainty:** The carbon credit market is still evolving, and there can be significant fluctuations in carbon credit prices. This uncertainty can deter farmers from participating, as they may be uncertain about the long-term financial viability of carbon farming [27]. The volatility of carbon credit prices can make it difficult for farmers to estimate potential income from carbon credits, leading to hesitation in adopting carbon farming practices [31].
- **6. Land Use Conflicts**: The implementation of carbon farming practices may compete with other land uses, such as urban development or traditional agricultural practices. Striking a balance between carbon farming and other land uses is crucial to avoid conflicts and ensure sustainability [11].

As urban areas continue to expand, the pressure on agricultural land increases, often leading to land use changes that can undermine the goals of carbon farming [32].

- **7. Long-Term Commitment**: Carbon farming requires long-term commitment and management to be effective. Farmers may be hesitant to adopt practices that necessitate sustained changes in management and farming techniques over many years [4]. This reluctance can stem from concerns about the initial costs and risks associated with transitioning to new practices, as well as uncertainty regarding the immediate benefits [33].
- **8. Biodiversity Concerns:** While carbon farming can enhance biodiversity, poorly designed practices may inadvertently lead to biodiversity loss. For example, monoculture planting in agroforestry systems can reduce habitat diversity and impact local ecosystems negatively [9]. This lack of diversity can create a more homogenous environment that supports fewer species and increases vulnerability to pests and diseases. In contrast, diverse planting strategies that incorporate a variety of species can promote a more resilient ecosystem. These polycultures can provide habitat and food sources for various organisms, including pollinators and beneficial insects, which are crucial for maintaining ecological balance and supporting agricultural productivity [34].

Future directions in carbon farming:

- 1. Research and Development: Focus on research to identify and promote plant species that excel in carbon sequestration [4]. Invest in the development of drought-resistant crops and agroforestry species to improve the effectiveness and adoption of carbon farming practices [5]. This includes conducting field trials to assess the performance of various species under different environmental conditions and integrating indigenous knowledge into the development of new varieties [9]. Collaborative efforts among agricultural researchers, universities, and local communities can accelerate the identification of best practices and innovative solutions tailored to specific regions [11].
- **2. Financial Support:** Offer financial assistance and incentives to small-scale farmers, especially in developing countries, to support their investment in sustainable land management and carbon farming techniques [12]. Programs could include grants, low-interest loans, and subsidies for implementing carbon farming practices [3]. Additionally, creating a mechanism for farmers to sell carbon credits can provide them with a direct financial return on their sustainable practices [27]. Establishing cooperative models may also help smallholder farmers pool resources, access funding, and share knowledge, thus enhancing the viability of carbon farming initiatives [25].
- **3. Policy Framework:** Create and implement supportive policies at local, national, and international levels to encourage carbon farming [10]. This includes establishing carbon pricing mechanisms, setting regulatory standards, and providing technical support to farmers [35]. Governments should work to streamline certification processes for carbon credits to make participation more accessible [27]. Furthermore, integrating carbon farming into national agricultural strategies and climate action plans will help ensure its prioritization and alignment with broader sustainability goals [11].

Collaboration among governments, NGOs, and private sectors can enhance the effectiveness of policy implementation [12].

- **4. Education and Capacity Building:** Implement educational programs and capacity-building initiatives that inform farmers about the benefits of carbon farming and provide training on sustainable practices [25]. Workshops, field demonstrations, and knowledge-sharing platforms can empower farmers with the necessary skills and confidence to adopt new techniques [3]. Partnering with local agricultural extension services can facilitate the dissemination of information and support networks for farmers transitioning to carbon farming [10].
- **5. Monitoring and Evaluation**: Develop robust monitoring and evaluation frameworks to assess the effectiveness of carbon farming initiatives [35]. Implementing consistent methodologies for measuring carbon sequestration, soil health, and biodiversity outcomes will provide valuable data to inform policy decisions and improve practices [5]. Utilizing technology such as remote sensing and soil sensors can enhance data collection and analysis, allowing for more effective adjustments to practices over time [11].
- **6. Global Collaboration**: Foster global collaboration to share knowledge, experiences, and best practices in carbon farming [4]. International partnerships can facilitate technology transfer and capacity building, particularly for developing countries [5]. By participating in global initiatives and forums focused on climate change and sustainable agriculture, countries can share insights and accelerate the adoption of effective carbon farming practices worldwide [3].
- 7. Integration with Other Sustainable Practices: Encourage the integration of carbon farming with other sustainable agricultural practices, such as regenerative agriculture and permaculture [10]. This holistic approach can enhance overall farm resilience, improve ecosystem services, and optimize resource use [11]. Demonstrating the synergies between carbon farming and other sustainability efforts can attract broader interest and participation from farmers and stakeholders alike [30].

Conclusion

In conclusion, carbon farming represents a transformative approach to agricultural sustainability, providing a comprehensive strategy for addressing both climate change mitigation and adaptation. By harnessing the power of photosynthesis and natural ecosystem processes, carbon farming holds the key to building resilient food systems while mitigating climate change impacts. Embracing carbon farming practices is not only imperative for safeguarding agricultural livelihoods and ecosystems but also essential for securing a sustainable future for generations to come.

Carbon farming represents a transformative approach to agriculture, one that not only addresses the immediate needs of food production but also plays a critical role in combating climate change. By integrating practices that sequester carbon in the soil, reduce greenhouse gas emissions, and enhance biodiversity, carbon farming can significantly contribute to climate resilience. These practices offer a pathway to sustainable agriculture, where farmers can maintain productivity while protecting the environment. The widespread adoption of carbon farming requires collaboration among

farmers, policymakers, and scientists to develop supportive frameworks and incentives. Ultimately, carbon farming holds the promise of a more sustainable future, ensuring food security while mitigating the impacts of climate variations.

As farmers adopt these practices, they can significantly contribute to the global carbon reduction goals while simultaneously improving their land's productivity and health. This dual benefit underscores the importance of creating supportive frameworks—financial, educational, and policy-oriented—that empower farmers to transition to carbon farming practices effectively. The successful implementation of carbon farming will depend on strong collaboration among stakeholders, including farmers, researchers, policymakers, and the private sector.

Moreover, as we advance towards a more sustainable agricultural paradigm, the role of innovation and technology will become increasingly critical. New tools and methodologies for monitoring carbon sequestration, assessing soil health, and enhancing biodiversity can provide farmers with the necessary insights to optimize their practices. By promoting a culture of continuous learning and adaptation, we can ensure that carbon farming evolves to tackle the challenges of climate change and ensure food security. Ultimately, carbon farming has the potential to reshape our agricultural landscape, making it a cornerstone of our efforts to combat climate change while enhancing food security. As global awareness of environmental issues grows, the adoption of carbon farming practices can lead to a broader recognition of the value of sustainable agriculture. This shift can pave the way for a resilient agricultural sector that not only nourishes current populations but also protects the planet for future generations, making carbon farming an indispensable part of our collective response to one of the most pressing challenges of our time.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Acknowledgment

The authors would like to express their gratitude to all researchers, institutions, and funding agencies that contributed to the development of this study. Special thanks to agricultural practitioners and AI technology developers whose insights and innovations have greatly influenced this work.

By fostering AI-driven innovations in regenerative agriculture, future research and development efforts can contribute to greater sustainability, economic resilience, and global food security while reducing environmental degradation.

References

- 1. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
- 2. Smith, P., Bustamante, M., Ahammad, H., et al. (2019). "Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems." IPCC.
- 3. FAO (2020). *Building Climate Resilient Agriculture*. Food and Agriculture Organization of the United Nations.

- Lal, R. (2020). "Carbon Sequestration in Agricultural Soils: A Solution to Climate Change?" *Journal of Soil and Water Conservation*, 75(4), 93A-99A.
- 5. Zomer, R. J., Bossio, D.A., Sommer, R., & Verchot, L.V. (2017). "Global Sequestration Potential of Increased Organic Carbon in Cropland Soils." *Scientific Reports*, 7(1), 15554.
- 6. Philbin, S. P. (2020). Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization. Clean Technol. 2: 492-512.
- 7. Rumpel, C., Amiraslani, F., Chenu, C., et al. (2018). "The 4p1000 Initiative: Opportunities, Limitations, and Challenges for Implementing Soil Organic Carbon Sequestration as a Sustainable Development Strategy." *Ambio*, 47(5), 521-530.
- 8. Paustian, K., Lehmann, J., Ogle, S., Reay, D., et al. (2016). "Climate-smart Soils." *Nature*, 532, 49-57.
- 9. Pretty, J., Toulmin, C., & Williams, S. (2018). "Sustainable Intensification in African Agriculture." *International Journal of Agricultural Sustainability*, 9(1), 5-24.
- 10. Searchinger, T., Waite, R., Hanson, C., et al. (2019). *Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050.* World Resources Institute.
- 11. Kumar, S., Lee, H., & Hwang, J. (2021). "The Role of Agroforestry in Sustainable Agriculture." *Sustainability*, 13(5), 2580.
- 12. Bennett, E. M., et al. (2019). "Policy approaches for enhancing ecosystem services in agricultural landscapes." *Environmental Science & Policy*, 101, 107-115.
- 13. Smith, R. G., et al. (2015). The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. *Restoration Ecology*, 23(5), 560-568.
- 14. Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops A meta-analysis. *Agriculture, Ecosystems & Environment*, 200, 33-41.
- 15. Pan, Y., et al. (2011). A large and persistent carbon sink in the world's forests. *Science*, 333(6045), 988-993.
- 16. IPCC (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
- 17. Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. *Agroforestry Systems*, 76(1), 1-10.
- 18. Houghton, R. A. (2010). How well do we know the flux of carbon to the atmosphere from land-use change? *Global Carbon Project*.

- 19. Nabuurs, G. J., et al. (2007). Forests and carbon market: The role of forests in climate change mitigation. *Forest Policy and Economics*, 9(5), 470-484.
- 20. Lehmann, J., et al. (2015). Biochar effects on soil biota A review. *Soil Biology and Biochemistry*, 43(9), 1812-1836.
- 21. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming—A review. *Agricultural Systems*, 153, 69–80.
- 22. Mitsch, W. J., & Gosselink, J. G. (2015). *Wetlands* (5th ed.). Hoboken, NJ: John Wiley & Sons.
- 23. Teague, W. R., Dowhower, S. L., Baker, S. A., Haile, N., DeLaune, P. B., & Conover, D. M. (2011). Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. *Agriculture, Ecosystems & Environment*, 141(3-4), 310-322.
- 24. gricarbon.co.uk/15-benefits-of-soil-carbon-sequestration-in-farming/?utm_source.
- 25. Meyer, S., et al. (2021). "Understanding Barriers to the Adoption of Carbon Farming Practices." *Agriculture and Human Values*, 38, 1-13.
- 26. Thompson, A. R., et al. (2020). The role of education in promoting sustainable agricultural practices. *Agricultural Education and Extension*, 26(1), 57-70.
- 27. Peters-Stanley, M., & Yin, D. (2013). "State of the Voluntary Carbon Markets 2013: A Global Perspective on a Growing Market." *Ecosystem Marketplace*.

- 28. Fischer, G., et al. (2020). Agricultural investment in developing countries: Opportunities and challenges. *Food Policy*, 96, 101837.
- 29. Méndez, V. E., et al. (2021). Smallholder farmers' access to credit and sustainable agricultural practices: Evidence from rural Mexico. *Sustainability*, 13(5), 2543.
- 30. Bennett, S. J., et al. (2019). "Carbon Credits for Farmers: A Guide to Carbon Markets." *Environmental Science & Policy*, 92, 58-66.
- 31. Harrison, R., et al. (2020). "The role of farming practices in mitigating climate change: A review." *Agricultural Systems*, 179, 102747.
- 32. Seto, K. C., et al. (2012). "Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools." *Proceedings of the National Academy of Sciences*, 109(40), 16083-16088.
- 33. Garnett, T., et al. (2013). "Sustainable intensification in agriculture: premises and policies." *Science and Society*, 2(4), 258-275.
- 34. Gliessman, S. R. (2014). "Agroecology: The Ecology of Sustainable Food Systems." *CRC Press.*
- 35. Carter, M. R., et al. (2019). "Challenges in Soil Carbon Measurement and Verification: Implications for Carbon Sequestration Projects." *Soil Biology and Biochemistry*, 127, 112-119.