

18 May 2025: Received 04 July 2025: Revised 14 July 2025: Accepted 15 August 2025: Available Online

https://aatcc.peerjournals.net/

Original Research Article

Open Access

Bioactive volatile organic compounds from diverse *Metarhizium anisopliae* isolates: GC-MS/MS analysis and insecticidal potential against *Spodoptera litura*

D. Neethu Roy*¹, Arunkumar Hosamani¹, A. Prabhuraj¹, Harischandra Naik. R², Saroja Narsing Rao¹, B. Kisan¹

¹University of Agricultural Sciences, Raichur-584104 Karnataka, India ²College of Horticulture, UHS Campus, Bengaluru-560065 Karnataka, India

ABSTRACT

This study delves into exploring the insecticidal potential of various isolates of Metarhizium anisopliae by documenting and analyzing their volatile secondary metabolites. The primary objective was to identify isolates showcasing promising biocontrol properties, thereby emphasizing sustainable alternatives to synthetic pesticides. Twelve isolates of M. anisopliae were subjected to examination, with GC-MS/MS analysis utilized for the identification of volatile organic compounds. Laboratory bioassays were conducted against Spodoptera litura, with recorded mortality rates serving as indicators of effectiveness for each isolate. A central focus of investigation was the correlation between the number of volatile metabolites and insecticidal activity. Results indicated that among the isolates, UASR BC-Ma38 exhibited the highest percentage of mortality (98.89 per cent) in bioassays against S. litura, which correlated with the presence of 28 volatile metabolites, primarily demonstrating insecticidal activity. Conversely, ICAR-NBAIR-Ma14 displayed the lowest mortality percentage (45.56 per cent), along with 14 identified metabolites. In conclusion, the study underscores the efficacy of certain M. anisopliae isolates, particularly UASR BC-Ma38, as potential biological control agents against S. litura. Moreover, the correlation between the abundance of volatile metabolites and insecticidal activity highlights the significance of these compounds in augmenting the virulence of isolates, thereby contributing to the development of sustainable pest management strategies leveraging entomopathogenic fungi.

Keywords: Bioactive volatile organic compounds, Metarhizium anisopliae, GS-MS/MS analysis, Insecticidal potential, Spodoptera litura, Secondary metabolites.

Introduction

Spodoptera litura (Fab.), commonly known as the tobacco caterpillar or cotton leafworm, is a nocturnal moth belonging to the family Noctuidae and order Lepidoptera. This polyphagous pest poses a serious threat to Agriculture in Asia, Oceania and the Indian subcontinent, infesting a staggering 87 species of host plants. First described by Johan Christian Fabricius in 1775, S. litura larvae exhibit vigorous feeding patterns, often resulting in complete destruction of leaves⁶⁴. The economic impact of this pest is devastating, with reported yield losses of 71 per cent in groundnut and 23-50 per cent in tobacco crops in southern India alone. With strong reproductive abilities, ecological adaptation, severe generation overlap and irregular outbreaks, S. litura poses a continuous and formidable threat to host crops¹. As a result, extensive efforts have been undertaken to control this pest and mitigate its impact on agricultural production⁴⁴. The role of S. litura as a limiting factor in agricultural productivity has led to the development of various methods for its management. One commonly employed approach is the use of insecticides, which initially appealed to growers due to their

*Corresponding Author: D. Neethu Roy

D0I: https://doi.org/10.21276/AATCCReview.2025.13.04.42 © 2025 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

easy availability, ability to quickly suppress pest populations and potential for increasing productivity¹⁰. However, the widespread use of chemical insecticides, including pyrethroids, has resulted in the development of resistance in *S. litura*³. This resistance poses a significant challenge in effectively controlling the pest. Moreover, the indiscriminate use of pesticides has had detrimental effects on the environment, poisoning various components of the biosphere. These effects include the resurgence of pests and the reduction of natural enemies in agroecosystems, which, in turn, contribute to the rapid rebound of the pest.

In the contemporary context, there is a growing interest in the exploration of bioactive compounds sourced from microorganisms as alternatives to chemical insecticides offer a range of advantages, including biodegradability, precise targeting, eco-friendliness and their potential to address the issue of insecticide resistance in pest populations 28,39. Numerous studies have investigated the control potential of entomopathogenic fungi and their metabolites against a diverse array of insect pests 19,43. Secondary metabolites derived from various sources, including *Chrysosporium* 48, *Metarhizium* and *Beauveria* 35,12, *Culicinomyces* 46, *Verticillium* 48 and *Piper* 41, have been comprehensively evaluated for their potential as insecticidal agents against a wide spectrum of insect pests 38. Furthermore, these metabolites exhibit a diverse range of activities, encompassing antibacterial, antifungal, anticancer, antioxidant, feeding deterrent, insect repellent and

antiviral properties, thereby positioning them as promising candidates for the development of novel bioactive agents^{23,37,55}. These findings highlight the considerable potential of metabolites originating from entomopathogenic fungi in acting as effective insecticidal agents within pest management programs. Consequently, in this study, we present our results, evaluating the insecticidal activity of metabolites derived from 12 isolates of *M. anisopliae* against *S. litura*.

Materials and Methods

Research Site

The research was carried out at the ICAR-AICRP on Biocontrol, University of Agricultural Sciences, Raichur, Karnataka, over a span of five months, from January 2024 to May 2024.

Source of M. anisopliae isolates

Four isolates of *M. anisopliae* were sourced from ICAR-NBAIR, including ICAR-NBAIR-Ma4 (isolated from *Ploceaderus ferrugineus*), ICAR-NBAIR-Ma14 (isolated from the rhizosphere soil of chilli), ICAR-NBAIR-Ma16 (isolated from *Plutella xylostella*) and ICAR-NBAIR-Ma35 (isolated from soil). In addition, eight isolates were obtained from ICAR-AICRP on Biocontrol, University of Agricultural Sciences, Raichur, comprising UASR BC-Ma2, UASR BC-Ma7, UASR BC-Ma26, UASR BC-Ma27, UASR BC-Ma31, UASR BC-Ma35, UASR BC-Ma38, and UASR BC-Ma60 (isolated from agricultural soils in North-Eastern Karnataka). All these isolates were sub-cultured on Sabouraud's Dextrose Yeast Extract Agar Medium (SDYA), incubated for 14 days at 25 ± 2 °C, and subsequently subcultured onto SDYA slants. These subcultures were preserved at -20 °C for use in experimental studies.

Fungal inoculum preparation

The 12 isolates of *M. anisopliae* were characterized for their virulence in laboratory bioassays. Spore suspension was prepared by adding one gram of 14 day-old fungal culture grown on SDYA to nine mL of sterile distilled water containing 0.01 per cent Tween 80. The suspension was vortexed for 5 min and filtrated through three layers of muslin cloth to get hyphal-free spore suspension and the spore concentration was adjusted to various concentrations such as 1×10^2 , 1×10^3 , 1×10^4 , 1×10^5 , 1×10^6 , 1×10^7 , 1×10^8 and 1×10^9 spores per mL using Neubauer's improved haemocytometer. Conidial viability was determined by plating preparations onto SDYA medium and examining 25 colonies per plate for each of three replicates to check the colony-forming units (CFUs) of the fungal isolate. An aliquot of the suspension was taken to check the viability of the conidia⁵².

Bioassay

A bioassay test was carried out in a completely randomized design (CRD) under laboratory conditions to determine the mortality. Third instar larvae of *S. litura* were dipped for 10 seconds in conidial suspension of the concentrations ranging from 1×10^2 to 1×10^9 conidia per mL to ensure contact with conidia of the fungus. The larvae were selected after two days of moulting, since the newly formed integument was highly susceptible to conidial germination and infection. For each concentration, 30 larvae of uniform age were treated in three replications. The untreated control was maintained simultaneously by dipping in only 0.02 per cent Tween 80 in sterile distilled water. After air drying, the treated larvae were carefully transferred and reared in the containers by providing fresh food daily.

The larval mortality was recorded at 4, 6, 8, 10, 12, and 14 days after treatment (DAT). Dead and moribund larvae were removed in separate containers and placed in a humid chamber to allow the growth of the fungus. The larvae died within 24 h post inoculation, with no evidence of mycosis were assumed to be dead due to an unknown cause and such larvae were not considered in analysis ⁴⁹. Finally, per cent mortality of *S. litura* larvae for each of the three replicates was calculated ⁴⁵. This study was conducted at room temperatures of 25 ± 2 °C and RH (70 \pm 10 %). The mortality data were corrected by Abbott's formula ² and then subjected to 'arcsine' transformation ¹⁸.

Percent mortality = No. of larvae dead due to infection
Total number of larvae treated × 10

Extraction and Identification of Volatile Organic Compounds

Detection of bioactive compounds present in 12 isolates of *M*. anisopliae was identified by using Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS). The 12 isolates of M. anisopliae were grown on potato dextrose broth (PDB) in 500 mL conical flasks containing 250 mL of medium at 28 ± 1 °C for 14 days. After incubation for 14 days, the fully grown fungal flasks were kept on a rotary shaker at 28 ± 1 °C and 150-200 rpm for 2-3 days. The culture was filtered under reduced pressure through two layers of Kimwipes and then through Whatman's No. 1 filter paper. The culture filtrate was extracted twice for 12 hours with an equal volume of ethyl acetate. The organic layer of solvent, which may contain bioactive compounds, was collected through a separating funnel into conical flasks. The solvent was evaporated in vacuo, and the crude extracts were dissolved in 1 mL ethyl acetate for GC-MS/MS analysis. GC-MS/MS parameters were performed by using an Agilent 7890B GC with 7000C MS system, used for identification and quantification with oven temperature of 75 °C for 1 min and 30 °C/min to 300 °C for 2 min; inlet and transfer line temperature is programmed at 280 $^{\circ}\text{C}$ and 290 °C, respectively. The flow rate of helium gas is 1.0 mL/min. 1 μL samples were injected under split of 3:1. The ionization mass spectroscopic analysis was done with 70eV. Interpretation of mass spectrum GC-MS/MS analysis was done by matching a list of known compounds' spectra with Agilent's GC-MS/MS Mass Hunter, NIST MS Library, and NIST's Automated Mass Spectral Deconvolution and Identification Software.

Statistical Analysis

The data was per cent arcsine transformed, and before being subject to analysis of variance (ANOVA) to determine the significance of intra specific differences. Significance was accepted at p<0.01 for a completely randomized block design with three replicates. Per cent mycosis was calculated as the proportion of treated dead larvae that showed mycosis and arcsine transformed. The mean of per cent arcsine mortality and mycosis data (from all replicates) in each treatment was back transformed to normalize the data¹⁸.

Results

Bioassay

The efficacy of native isolates against *S. litura* revealed that the fungal isolate UASR BC-Ma38 exhibited the highest mortality of 98.89 per cent and followed by UASR BC-Ma35, ICAR-NBAIR-Ma4 (Standard check), and UASR BC-Ma60, which recorded 93.33, 90.00, and 86.67 per cent mortality respectively. On the other hand, the fungal isolate ICAR-NBAIR-Ma14 demonstrated the least mortality of 45.56 per cent, followed by UASR BC-Ma26, UASR BC-Ma27, and UASR BC-Ma31, which recorded 56.67, 57.78 and 66.67 per cent, respectively on the fourteenth

day after treatment (Table 1). Notably, all isolates demonstrated an increase in mortality with higher concentrations.

Volatile organic compounds

An investigation was conducted to identify bioactive volatile secondary metabolites produced by 12 isolates of *M. anisopliae*. The ethyl acetate crude extract from these *M. anisopliae* isolates underwent Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) analysis to accurately identify bioactive compounds (Fig. 1). In total, 78 compounds were identified across the 12 isolates of *M. anisopliae*, with specific compound counts as follows: 14 compounds in ICAR-NBAIR-Ma14, 20 compounds in ICAR-NBAIR-Ma4, 21 compounds in UASR BC-Ma27, 22 compounds in UASR BC-Ma60, 24 compounds in ICAR-NBAIR-Ma16, ICAR-NBAIR-Ma35, UASR BC-Ma26, UASR BC-Ma2, UASR BC-Ma7, UASR BC-Ma31, UASR BC-Ma35, and 28 compounds in UASR BC-Ma38 (Table 2 and Fig. 1). Notably, three compounds, namely Diethyl pyridine-3,4-dicarboxylate, Methanesulphonamide, N-(2-pentyl)-N-ethyl- and N-[3-[N-Aziridyl|propyl]-3-dimethylaminopropylamine, were found consistently in all isolates, indicating their presence across the samples. Another compound, Ethanone, 1-(3-pyridinyl), was present in all isolates except UASR BC-Ma26, while S-Allyl-Lcysteine, N-(n-butyl)-, n-butyl ester was identified in all isolates except UASR BC-Ma2. Additionally, several other compounds showed varying degrees of presence among the isolates. For instance, Acetamide, N-butyl-N-propyl- was present in 10 isolates but absent in ICAR-NBAIR-Ma14 and UASR BC-Ma35. Tris (aziridinomethyl) hydrazine was present in 10 isolates but absent in UASR BC-Ma7 and UASR BC-Ma35. Furthermore, compounds such as 9,10-Anthracenedione, 1-amino-, Benzonitrile, 4-ethenyl-, Acetamide, 2-chloro-N-propyl-Ntetradecyl-, Beryllium, bis(2,4-pentanedionato-0,_0')-, (T-4)-, 9,12-Octadecadienoic Acid (Z,_Z)-, 1,3-Propanediamine, N,_Ndiethyl-N'-methyl- and Acetamide, N-methyl-N-hexadecylshowed presence in specific isolates while being absent in others. As these compounds were found in at least 6 isolates, they are considered major bioactive volatile secondary metabolites of *M. anisopliae*. These findings highlight the common occurrence of certain compounds across the majority of isolates and the variability in the presence of a few compounds among the isolates.

Discussion

The highest mortality rate was observed at a concentration of 1 × 10° spores per mL, demonstrating greater effectiveness compared to other concentrations. In S. frugiperda, a mortality rate exceeding 80 percent was recorded when exposed to six isolates of *M. rileyi* at a concentration of 1×10^{10} spores per mL²⁹. Isolates of M. anisopliae were used to target Psylloides chrysocephala larvae in an effort to identify a stable and highly virulent strain suitable for laboratory conditions¹⁵. Additionally, various isolates of B. bassiana were tested for efficacy against the blister beetle Lytta nuttali³⁴. In S. litura, an 86.50 percent mortality rate was observed after a 10-day exposure to the highest concentration²⁶. The M. anisopliae isolates CLO 53 and CLO 54 exhibited the highest mortality rate of 90 percent after 10 days of post-inoculation, outperforming other isolates⁷. Similarly, the ICIPE 78 and MA/GPK isolates of *M. anisopliae* demonstrated high virulence, with mortality rates between 77.9 and 82.6 percent, surpassing other isolates⁵⁷. Consistent with these findings, the highest larval mortality in S. *litura* and *H. armigera* was recorded at a concentration of 1×10^9

spores per mL of *M. rileyi*³¹. Furthermore, in *H. armigera*, mortality rates of 78.89 percent at 1×10^8 spores per mL and 85.92 percent at 1×10^{10} spores per mL were documented²⁰.

The data indicated a steady and cumulative rise in mortality as spore concentration increased. The highest mortality rates were consistently recorded at the elevated concentration of 1×10^9 spores per mL throughout the observation period. A strong positive correlation was observed between the number of infective spores and the mortality induced by mycosis¹³. The vulnerability of the target insect to fungal infection largely depends on spore concentration, with mortality rates rising over time⁵⁹. Similarly, research on the efficacy of various entomopathogenic fungal strains against different aphid species under controlled laboratory conditions confirmed that higher spore concentrations resulted in greater aphid mortality⁵. Comparable trends were noted in the present study with third instar larvae of S. litura. Consistent with these findings, mortality rates were initially lower during the first two days but increased significantly thereafter⁴. Collectively, these studies highlight the concentration-dependent and timesensitive impact of entomopathogenic fungion insect mortality. In recent times, there has been a significant surge in interest regarding the utilization of biologically derived pesticides as a viable substitute for synthetic chemicals 6,42,14,53. Among these, metabolites derived from entomopathogenic fungi hold particular promise due to their numerous advantages over synthetic pesticides. Notably, they are effective in targeting mosquitoes at various stages of their life cycle while exhibiting lower toxicity towards non-target organisms. Furthermore, these metabolites demonstrate remarkable stability at both cold and room temperatures, making them viable for extended storage periods of several months^{54,8}. The compound 1-Octen-3ol, identified in UASR BC-Ma31, UASR BC-Ma38 and UASR BC-Ma60, has been recognized for its insecticidal properties, supporting previous findings that highlight its potential as a natural insecticide for pest management²¹. This compound is commonly found in fungi and various plant species, contributing to the volatile components of essential plant oils^{27,16,47,60}. Despite their widespread occurrence, the ecological roles of such compounds remain largely unexplored⁵⁸. These volatile organic compounds (VOCs), produced by Metarhizium and other entomopathogenic fungi, play a role in either attracting or eliminating insect pests^{58,11}. Recent studies have also demonstrated that 1-Octen-3-ol exhibits both mollusc-repellent and molluscicidal properties²⁵. The secondary metabolites identified from *M. anisopliae* in the present study align closely with findings from earlier research, which identified several significant bioactive compounds with insecticidal potential. Notably, 9,12-Octadecadienoic Acid (Z,Z)was consistently found across multiple isolates, including ICAR-NBAIR-Ma4, ICAR-NBAIR-Ma35, UASR BC-Ma2, UASR BC-Ma7. UASR BC-Ma35, and UASR BC-Ma38 [30,53]. Similarly, 1,2-Benzenedicarboxylic Acid, Diisooctyl Ester was specifically detected in ICAR-NBAIR-Ma16, while 9-Eicosyne was predominantly present in UASR BC-Ma38.

Quinoline obtained in the isolate UASR BC-Ma31 was previously extracted from $\it Ruta$ $\it chalepensis$ leaves, reported to exhibit strong insecticidal activity against $\it Sitophilus$ $\it oryzae$, with an LD_{50} of 0.063 mg/cm² $^{[24]}$. Compound ethanone, 1-(3-pyridinyl), commonly known as 3-acetylpyridine, was found in all isolates studied, except UASR BC-Ma26. This compound functions as a contact insecticide, interfering with the nervous system and leading to paralysis and death in various pests.

Its efficacy has been demonstrated against cockroaches, ants, mosquitoes, and the brown planthopper, often outperforming conventional insecticides like DDT and pyrethroids. Additionally, 3-acetylpyridine is considered safe for humans and mammals, making it a promising agent for sustainable agricultural use due to its mechanism of action, disruption of nerve impulse transmission [17,50].

Another bioactive metabolite, 5-Aziridinopentanol, was identified only in two isolates, ICAR-NBAIR-Ma4 and UASR BC-Ma60. This compound is known to induce oxidative stress and promote cell death in multiple insect species, including mosquitoes, cockroaches, and locusts [56]. Likewise, Acetamide, N-butyl-N-propyl-, was widely present across the majority of isolates, with the exception of ICAR-NBAIR-Ma14 and UASR BC-Ma35. This compound exhibits a range of insecticidal actions, such as ovicidal, repellent, and lethal effects, signifying its broad-spectrum utility in pest management programs ^[61]. The compound 3,11-Diazatricyclo[7.3.1.0(3,8)]trideca-5,7-dien-4one, 11-(2-hydroxyethyl)- was detected exclusively in UASR BC-Ma7 and UASR BC-Ma31. Previously isolated from Anabasis articulata stems, this molecule has demonstrated both antioxidant and antimicrobial properties [9]. Additionally, 9,10-Anthracenedione, 1-amino- was identified in eight different isolates, while 1,2-Benzenedicarboxylic Acid, Diisooctyl Ester, reaffirming its earlier mention, was uniquely found in ICAR-NBAIR-Ma16. These compounds have been extracted from Melia dubia leaves in earlier studies, where they served as effective feeding deterrents and insect repellents [36].

Our findings further highlight the complex and diverse nature of volatile organic compounds (VOCs) produced by *M. anisopliae* isolates. The type and quantity of these VOCs appear to be influenced by both the developmental stage of the fungus and the cultural conditions under which it is grown [11,22,33]. Such variability across entomopathogenic fungal isolates underscores their ecological significance and potential biocontrol value. Specific VOCs may attract insects, enhancing spore dispersal through a "lure and kill" mechanism, while

others could act as repellents, potentially reducing the efficacy of the fungus as a biocontrol agent [25]. For instance, virulent strains of *M. anisopliae* have been shown to be avoided by pests such as sweet potato weevils and termites, due to the release of specific volatiles including 2-Nonanone, 2-Nonanol, and 3-Nonen-2-one [32]. In our study, these compounds were found in ICAR-NBAIR-Ma35, UASR BC-Ma26, and UASR BC-Ma60, further substantiating their role in fungal-insect interactions. A comparative analysis of percentage mortality and VOC profiles among the various isolates revealed notable differences in virulence. UASR BC-Ma38 exhibited the highest insecticidal efficacy, with a mortality rate of 98.89 % against S. litura, coupled with the presence of 28 distinct VOCs, many with proven insecticidal properties. In contrast, ICAR-NBAIR-Ma14 displayed considerably lower virulence, with a mortality rate of just 45.56 % and a comparatively smaller VOC profile consisting of only 14 compounds. This clear correlation between the chemical diversity of fungal metabolites and insect mortality highlights the importance of metabolite profiling in selecting effective fungal strains for biocontrol.

Overall, the study reaffirms the significant role of entomopathogenic fungal metabolites in pest management strategies. The wide array of bioactivities including insecticidal, ovicidal, feeding-deterrent, repellent, antioxidant, and antimicrobial effects makes them promising candidates for sustainable and environmentally friendly pest control. Importantly, the adoption of fungal metabolites as alternatives to synthetic insecticides may contribute to reduced production costs and decreased environmental impact. To fully capitalize on the potential of these fungal metabolites, however, further studies are essential. Future research should aim at isolating and characterizing the most effective insecticidal compounds, evaluating their toxicity profiles and conducting field trials to determine their practical efficacy under real-world conditions. This will ensure the development of safe, cost-effective, and ecologically viable pest control solutions based on secondary metabolites of *M. anisopliae*.

Table~1: Laboratory~bio assay~of ~native~iso lates~of~Metarhizium~an isopliae~against~Spodoptera~litura~an isopliae~against~Spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~spodoptera~against~s

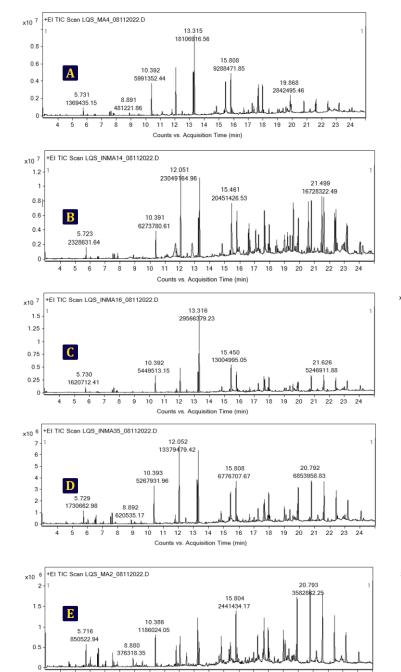
Concentrations	No. of larvae	Per cent Mortality													
(Spores/mL)		INMa4	INMa14	INMa16	INMa35	Ma2	Ma7	Ma26	Ma27	Ma31	Ma35	Ma38	Ma60		
1102	30	37.78	18.89	30.00	40.00	42.22	30.00	22.22	26.67	25.56	38.89	33.33	48.89		
1x10 ²	30	(37.92)e	(25.74)f	(33.19)h	(39.22)f	(40.52)g	(33.19)e	(28.11)f	(31.09)g	(30.36)f	(38.55)f	(35.25)f	$(44.36)^{g}$		
1103	30	40.00	21.11	37.78	42.22	45.56	33.33	26.67	31.11	27.78	43.33	37.78	54.44		
1x10 ³	30	(39.22)e	(27.34)ef	(37.90)g	(40.52)f	(42.45)ef	(35.25)de	(31.06)ef	(33.90)f	(31.77)ef	(41.16)f	(37.90)f	$(47.55)^{fg}$		
1x10 ⁴	30	45.56	24.44	46.67	50.00	47.78	36.67	30.00	36.67	32.22	53.33	48.89	57.78		
1X10	30	(42.45)e	(29.62)de	(43.09)f	(45.00)e	(43.73)ef	(37.25)de	(33.19) ^{de}	(37.25)e	(34.58) ^{de}	(46.91)e	(44.36)e	(49.49)ef		
1105	30	54.44	28.89	53.33	56.67	51.11	41.11	34.44	41.11	37.78	62.22	58.89	63.33		
1x10 ⁵	30	(47.56)d	(32.50) ^{cd}	(46.91)e	(48.84) ^{de}	(45.64) ^{de}	(39.86)cd	(35.90)d	(39.88)d	(37.92)d	(52.08)d	(50.12)e	$(52.75)^{de}$		
1106	30	63.33	31.11	64.44	62.22	55.56	45.56	42.22	45.56	44.44	73.33	72.22	67.78		
1x10 ⁶		(52.73)c	(33.87)c	(53.40)d	(52.08)cd	(48.19) ^{cd}	(42.44)bc	(40.52)c	(42.45)c	(41.81) ^c	(58.94)c	(58.20)d	(55.42) ^{cd}		
1107	30	73.33	37.78	72.22	67.78	60.00	53.33	46.67	47.78	51.11	81.11	82.22	72.22		
$1x10^{7}$	30	(58.94)b	(37.92)b	(58.20)c	(55.42)c	(50.78)bc	(46.91)b	(43.09)bc	(43.73)c	(45.64)c	(64.26)b	(65.08)c	(58.20)bc		
1x10 ⁸	30	80.00	41.11	77.78	76.67	63.33	63.33	53.33	52.22	58.89	92.22	94.44	77.78		
1X10°	30	(63.49)b	(39.87)ab	(61.89)b	(61.15)b	(52.75)ab	(52.75)a	(46.91)ab	(46.27)b	(50.12)b	(73.88)a	(76.52)b	(61.89)b		
1x10 ⁹	30	90.00	45.56	85.56	83.33	68.89	67.78	56.67	57.78	66.67	93.33	98.89	86.67		
IXIU	30	(71.73)a	(42.45)a	(67.69)a	(65.97)a	(56.10)a	(55.44)a	(48.84)a	(49.48)a	(54.75)a	(75.04)a	(86.49)a	(68.68)a		
Control	30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Control		$(0.00)^{f}$	(0.00)g	(0.00)i	(0.00)g	(0.00)h	(0.00)f	(0.00)g	$(0.00)^h$	(0.00)g	(0.00)g	(0.00)g	$(0.00)^h$		
SEm(±)		1.040	0.670	1.013	1.017	0.839	0.855	0.767	0.803	0.903	1.136	1.164	1.081		
CD (1 %)		4.234	2.727	4.125	4.138	3.415	3.480	3.124	3.269	3.676	4.623	4.736	4.400		
CV (%)		3.916	3.878	3.927	3.882	3.440	3.884	3.889	3.864	4.306	3.927	3.996	3.844		

#INMa4=ICAR-NBAIR-Ma-4, INMa14=ICAR-NBAIR-Ma14, INMa16=ICAR-NBAIR-Ma16, INMa35=ICAR-NBAIR-Ma35, Ma2=UASR BC-Ma2, Ma7=UASR BC-Ma7, Ma26=UASR BC-Ma26, Ma27=UASR BC-Ma27, Ma31=UASR BC-Ma31, Ma35=UASR BC-Ma35, Ma38=UASR BC-Ma38 and Ma60=UASR BC-Ma60.

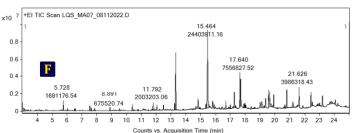
Figures in the parenthesis are arcsine values for per cent mortality

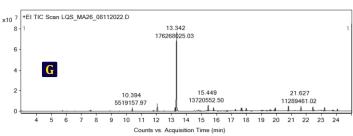
CD @ P=0.01 significant at (0.01) per cent level of significance

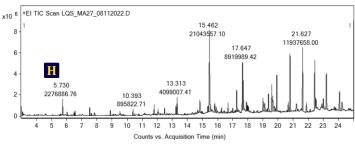
 $Per cent \, mortality \, followed \, by \, same \, letters \, in \, a \, column \, not \, significantly \, different \, by \, DMRT$

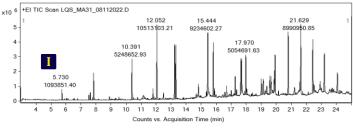

 $Table\,2: Bioactive\,volatile\,organic\,compounds\,identified\,in\,crude\,extracts\,of\,12\,M.\,an is opliae\,is olates\,through\,GC-MS/MS\,an alysis$

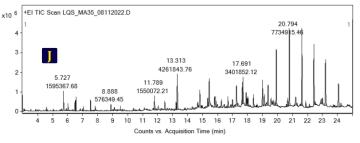
Section Sect	Sl. No.	Compound name	INM	INMa	INMa	INMa	Ma	Ma	Ma2	Ma2	Ma3	Ma3	Ma3	Ma6
September P			a4	14	16	35	2	7	6	7	1	5	8	0
3														
Tokensen (4.1)-Allentings-September perspective P		-	_		_									
Second Color		1												
Trispart from the hybridy privations			P											
Bellety pyrodines-3-d-ciarchoptate	6	Beryllium, bis(2,4-pentanedionato-0,0')-, (T-4)-	P	P	P	A	P	P	Α	P	A	A	A	P
9	7	Tris(aziridinomethyl)hydrazine	-	P	P	P	P	A	P	P	P	A		P
10		1 11												
1			_											
132 NANN/N-Totales-Spirithmen P														
12	- 11		Р	A	A	A	A	P	A	A	A	A	Р	A -
13 Proparamitic, NN-disspreypyl-activently-disply-	12		P	A	A	A	A	A	A	A	A	A	A	A
14 Mechanicalphonamich, K-(2-pentyl-k-etryl- 15 Silma, derhyl(pich-arthylychrolycy per loycy P	13	The state of the s	P	A	A	P	A	A	A	A	A	A	P	A
16	14		P	P	P	P	P	P	P	P	P	P	P	P
10	15	Silane, diethyl(cis-4-methylcyclohexyloxy)pentyloxy-	P	A	A	A	P	A	A	A	A	P	A	A
Agrical propyl antenenethyletrohydropyrean	16		Р	A	A	A	A	A	A	А	A	A	A	A
18		V 31 10 1												
1-														
N-13-FN Author(propy)		1 1												
20 dimethylaminopropylamine P P P P P P P P P														
221	20		P	P	P	P	P	P	P	P	P	P	P	P
23 2-Aninohenzoyl hydrazde	21	1 1 1	A	A	P	P	P	P	A	P	A	P	P	P
24	22	Decyl heptyl ether	A	A	P	A	A	A	Α	A	P	A	A	A
25	23	, ,	A	A	P	A	A	A	A	A	P	P	A	A
Section	24		A	A	P	A	A	A	A	A	P	A	A	A
26								n			D	Α		
27											_			
Carbonic acid, monoamide, N-propyl-N-(hept-2-yl)-, buylest buylest buylest buylest buylest buylest buylest carbonic acid, monoamide, N-propyl-N-(hept-2-yl)-, buylest carbonic acid, monoamide, N-propyl-N-buylest carbonic acid, monoamide, N-propyl-N-buyl-straine, N-propyl-straine, N-propyl-N-buyl-straine, N-propyl-N-buyl-strai		1 11										_		
20														
30 Terbutaline, 37MS derivative A A P A A A P A A A	28		A	A	P	A	A	A	A	A	A	A	A	A
N-[3-[4-Diethylamino-1]	29	Egtazic acid	A	A	P	A	А	P	Α	A	Α	A	A	A
31	30	Terbutaline, 3TMS derivative	A	A	P	A	A	A	A	P	A	A	A	A
Second Color Seco	31		A	A	P	A	A	A	A	A	A	A	A	A
33 1,2-Benzenedicarboxylic Acid, Diisooctyl Ester														
34 Lauramide, N-butyl-N-(3-methylbutyl)		1 1												
35														
36 1,3-Propanediamine, NN-diethyl- A P A A P A A A A A														
37			A		A	A		A			A			
Quinoly diazene	27	N-[.betaDiethylaminoethyl]-N'-[7-chloro-4-	_	D	Δ.	_	Λ	Λ	Δ.	Δ.	Δ.	Δ.	Δ.	Α.
39 Anthraquinone, 2-amino- A P A A A A A P A A								A	A	А				
40 Acetamide, N-methyl-N-hexadecyl-						_								
41		-			_									
41 diethylaminobu A P A A A A A A A A	40		A	P	A	P	P	Р	A	A	A	P	A	P
42	41		A	P	A	A	A	A	A	A	A	A	A	A
43	42	· · · · · · · · · · · · · · · · · · ·	A	A	A	P	P	A	A	A	A	P	P	
1-[Hexahydropyrrolizin-3-ylidene]-3,3-dimethyl-butan-2-one A		1 1 1												
A	44	benzaldehyde, 4-(diethylamino)-2-methoxy-	A	A	A	P	A	A	P	A	A	А	P	A
Sutan-2-one	45		Δ	Δ	Δ	p	Δ	Δ	p	Δ	Δ	Δ	D	D
A														
N'-[1-[4-Chlorophenyl]-1H-tetrazol-5-yl]-N,N-diethyl- 1,3-pro														
1,3-pro	47		A	A	A	P	A	A	A	A	A	A	A	A
49 Propionamide, N-propyl-N-tetradecyl- A	48		A	A	A	P	A	A	A	A	A	P	A	A
50 Propionamide, 3-bromo-N-propyl-N-dodecyl- A A A P A A A P A A A P A A A P A A A P A A A A P A A A A P A	49		A	A	A	P	A	A	A	A	A	A	A	P
51 Benzenamine, N-ethyl-2-methyl- A <t< td=""><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
52 Quinoline, 6-methyl- A														
54 N-[3-Methylaminopropyl]aziridine A A A A P P A	52	-	A	A	A	A	P	Α	Α	Α	Α	P	A	A
55 4-Isobutyl-2-Pyrrolidione 1-TMS Deriv A														
56 1-(3-Aminopropyl)-2-pipecoline A A A A P A A P A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
57 1,3-Propanediamine, N,N'-bis(3-aminopropyl)- A </td <td></td>														
58 Hexanamide, 2-bromo-N-(2-pentyl)-N-propyl- A A A A P A A A P A A A P A <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						_								
59 Acetamide, N-butyl-N-3-methylbutyl- A														
60 Valeramide, 5-chloro-N-(2-butyl)-N-ethyl- A A A A A P A A A A A A A A A A A A A		1 1 1 1 1												
61 Ala-Gly, N-(n-propyloxycarbonyl)-, n-propyl ester A A A A A P A A A A A A A A A A A A A														
62 3,11-Diazatricyclo[7.3.1.0(3,8)]trideca-5,7-dien-4-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
one, 11-(2-hydroxyethyl)-														
	02	one, 11-(2-hydroxyethyl)-	A	A	A	A	A	Р	A	A	Р	A	A	А

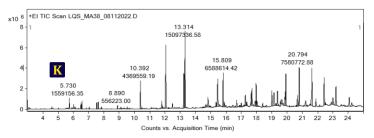

63	.beta[3-[Diethylaminopropyl]amino]propionitrile	A	A	A	A	A	P	A	A	A	A	A	A
64	N-[4-Cyclooctylaminobutyl]aziridine	A	A	A	A	Α	A	P	A	A	A	A	A
65	Ethyl 3-(N-butylacetamido)propanoate	A	A	A	A	A	A	P	A	A	A	A	A
66	o-Tolidine, N,N'-bis(trimethylsilyl)-	A	A	A	A	A	A	A	P	A	A	P	A
67	Quinoline	A	A	A	A	A	A	A	A	P	A	A	A
68	3,4-Difluorobenzoic acid, 2- ethylhexyl ester	A	A	A	A	A	A	A	A	P	A	A	A
69	Propionamide, 3-chloro-N-(2- butyl)-N-(3- methylbutyl)-	A	A	A	A	A	A	A	A	P	A	A	A
70	Deoxyspergualin	A	A	A	A	A	A	A	A	P	A	Α	A
71	1-Octen-3-ol	A	A	A	A	A	A	A	A	P	A	P	P
72	N,N',N''- Triethyldiethylenetriamine	A	A	A	A	A	A	A	A	P	A	P	A
73	3-Piperidinecarboxamide, N,N-diethyl-	A	A	A	A	A	A	A	A	P	A	A	A
74	1,4,8,11-Tetraazacyclotetradecane, 1,4,8,11- tetramethyl-	A	A	A	A	A	A	A	A	P	P	A	A
75	Cumidine	A	A	A	A	A	A	A	A	A	P	A	A
76	3,6-Diazahomoadamantan-9-ol	A	A	A	A	A	A	A	A	A	A	P	A
77	9-Eicosyne	A	A	A	A	A	A	A	A	A	A	P	A
78	2,3-Pentanedione 2-mono((3-ethyl-4-methyl-5- isoxazolyl)hyd	A	A	A	A	A	A	A	A	A	A	P	A


#INMa4=ICAR-NBAIR-Ma-4, INMa14=ICAR-NBAIR-Ma14, INMa16=ICAR-NBAIR-Ma16, INMa35=ICAR-NBAIR-Ma35, Ma2=UASR BC-Ma2, Ma7=UASR BC-Ma7, Ma26=UASR BC-Ma26, Ma27=UASR BC-Ma31, Ma35=UASR BC-Ma35, Ma38=UASR BC-Ma38 and Ma60=UASR BC-Ma60.


##A=Absent and P= Present




Counts vs. Acquisition Time (min)



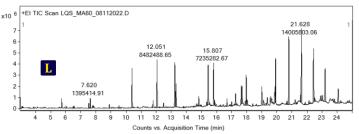


Fig. 1. GC-MS/MS Analysis of Crude Extract Mass Spectrum profiles from 12 Isolates of M. anisopliae; (a) ICAR-NBAIR-Ma-4, (b) ICAR-NBAIR-Ma14, (c) ICAR-NBAIR-Ma16, (d) ICAR-NBAIR-Ma35, (e) UASR BC-Ma2, (f) UASR BC-Ma7, (g) UASR BC-Ma26, (h) UASR BC-Ma27, (i) UASR BC-Ma31, (j) UASR BC-Ma35, (k) UASR BC-Ma38 and (l) UASR BC-Ma60.

Conclusion

In conclusion, the present study explored the efficacy of 12 isolates of *M. anisopliae* against *S. litura* and identified the volatile organic compounds (VOCs) produced by these isolates. The bioassay results demonstrated varying mortality rates, with isolate UASR BC-Ma38 exhibiting the highest efficacy at 98.89 %, surpassing the standard check ICAR-NBAIR-Ma4 and other isolates. Notably, the mortality rates increased with higher spore concentrations, emphasizing the concentrationdependent nature of the entomopathogenic effect. Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) analysis of ethyl acetate crude extracts uncovered a diverse spectrum comprising 78 compounds across the isolates. Certain compounds, such as Diethyl pyridine-3,4-dicarboxylate, Methanesulphonamide, N-(2-pentyl)-N-ethyl-, and N-[3-[N-Aziridyl]propyl]-3-dimethylaminopropylamine, exhibited consistent presence in all isolates. Additionally, several compounds, including 1-Octen-3-ol, 1,2-Benzenedicarboxylic Acid, Diisooctyl Ester, 9-Eicosyne, Ethanone, 1-(3-pyridinyl), 5-Aziridinopentanol, Acetamide, N-butyl-N-propyl-, 9,10-Anthracenedione, 1-amino-, quinoline, 3,11-Diazatricyclo [7.3.1.0(3,8)] trideca-5,7-dien-4-one, 11-(2-hydroxyethyl)- and nonane derivatives, displayed insecticidal properties. The study highlights the importance of expanding the range of potential bioactive compounds with insecticidal and antimicrobial activities. These findings underscore the complex interplay of volatile compounds and their potential role in insect control. The study contributes valuable insights into the varied effects of M. anisopliae isolates on S. litura and highlights the diversity of bioactive compounds that could be harnessed for eco-friendly pest management. Future research endeavors should delve deeper into the field application of these fungal metabolites, considering factors such as production costs and ecological impact to establish their practical utility in integrated pest management strategies. Overall, this study lays the foundation for further exploration and utilization of M. anisopliae metabolites as effective and environmentally friendly alternatives for insect pest control.

Acknowledgement

I sincerely extend my endless gratitude to Dr. Arunkumar Hosamani, Professor and Head, AICRP on Biocontrol, MARS, UAS, Raichur, Mr. Ravi Kumar from K2VR Analytical Laboratory, Bengaluru, Karnataka, and Dr. B. Raghavender, Founder and CEO of Khethari Agri Tech Pvt Ltd, Hyderabad, Telangana, for their able guidance, constructive suggestions and encouragement throughout my research period. I also express my thanks to the non-technical staff of AICRP on Biocontrol and PRFQAL, UAS Raichur, for their support and suggestions in the laboratory during my research.

References

- Abbas, N., Shad, S.A. and Razaq, M., Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in *Spodoptera litura* (Lepidoptera: Noctuidae), *Pestic Biochem Physiol.*, 103(3), 181–188 (2012).
- 2. Abbott, W.S., Method of computing effectiveness of an insecticide, *J. Econ. Ent.*, 18, 265-267 (1925).
- Ahmad, M., Arif, M.I. and Ahmad, M., Occurrence of insecticide resistance in field populations of *Spodoptera litura* (Lepidoptera: Noctuidae) in Pakistan, *Crop Prot.*, 26, 809-817 (2007).
- Akbari, S., Ali Safavi, S. and Ghosta, Y., Efficacy of Beauveria bassiana (Blas.) Vuill. against cabbage aphid Brevicoryne brassicae L. (Hemiptera: Aphididae) in laboratory condition, Arch. Phytopathol. Pflanzenschutz., 47(12), 1454-1458 (2014).
- 5. Akmal, M., Freed, S., Malik, M.N. and Gul, H.T., Efficacy of *Beauveria bassiana* (Deuteromycotina: Hypomycetes) against different aphid species under laboratory conditions, *Pak. J. Zool.*, 45(1), 71-78 (2013).
- Amer, A. and Mehlhorn, H., Larvicidal effects of various essential oils against *Aedes, Anopheles,* and *Culex* larvae (Diptera, Culicidae), *Parasitol. Res.*, 99(4), 466-472 (2006).
- Ansari, M.A., Vestergaard, S., Tirry, L. and Moens, M., Selection of a highly virulent fungal isolate, *Metarhizium* anisopliae CLO 53, for controlling *Hoplia philanthus*, *J. Invertebr. Pathol.*, 85(2), 89-96 (2004).
- Ansari, S., Hedayati, M.T., Zomorodian, K., Pakshir, K., Badali, H., Rafiei, A., Ravandeh, M. and Seyedmousavi, S., Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran, Mycopathologia, 181(1-2), 89-95 (2016).
- Belyagoubi-Benhammou, N., Belyagoubi, L., Gismondi, A., Di Marco, G., Canini, A. and Atik Bekkara, F., GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of *Anabasis articulate, Med. Chem. Res.*, 28, 754-767 (2019).
- Bhati, S.S., Management of Spodoptera litura (Fab.) in Green Gram (Vigna radiata L.) through Entomo-Pathogenic Nematode, Trends in integrated insect pest management. pp. 105-130 (2020).

- 11. Bojke, A., Tkaczuk, C., Stepnowski, P. and Gołębiowski, M., Comparison of volatile compounds released by entomopathogenic fungi, *Microbiol. Res.*, 214, 129-136 (2018).
- 12. Bukhari, T., Takken, W. and Koenraadt, C.J.M., Development of *Metarhizium anisopliae* and *Beauveria bassiana* formulations for control of malaria mosquito larvae, *Parasites Vectors*, 4, 23 (2011).
- 13. Butt, T.M. and Goettel, M.S., Bioassays of entomogenous fungi, Bioassays of entomopathogenic microbes and nematodes. pp. 141-195 (2000).
- 14. Butt, T.M., Greenfield, B.P., Greig, C., Maffeis, T.G., Taylor, J.W., Piasecka, J., Dudley, E., Abdulla, A., Dubovskiy, I.M., Garrido-Jurado, I. and Quesada-Moraga, E., *Metarhizium anisopliae* pathogenesis of mosquito larvae: a verdict of accidental death, *PloS One*, 8(12), e81686 (2013).
- 15. Butt, T.M., Ibrahim, L., Ball, B.V. and Clark, S.J., Pathogenicity of the entomogenous fungi *Metarhizium anisopliae* and *Beauveria bassiana* against crucifer pests and the honey bee, *Biocontrol Sci. Technol.*, 4 (2), 207-214 (1994).
- 16. Combet, E., Eastwood, D.C., Burton, K.S. and Henderson, J., Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis, *Mycoscience*, 47(6), 317-326 (2006).
- 17. Dey, P.K., Mandal, T.K. and Kundu, T.K., Insecticidal activity of 3-acetylpyridine against cockroaches and ants, *Pestic. Biochem. Physiol.*, 54(3), 263-270 (1996).
- 18. Gomez, K.A. and Gomez, A.A., Statistical procedure for Agricultural Research, Wiley and Sons, New York. p. 680 (1984).
- 19. Govindarajan, M., Jebanesan, A. and Reetha, D., Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, *Culex quinquefasciatus* Say, *Tropical biomedicine*, 22(1), 1-3 (2005).
- Hazarika, S., Patgiri, P., Dutta, P., Borkataki, S. and Das, K., Efficacy of local isolate of *Nomuraea rileyi* (Farlow) Sampson against *Helicoverpa armigera* (Hubner), *J. Entomol. Zool. Stud.*, 4(2), 167-169 (2016).
- 21. Hummadi, E.H., Dearden, A., Generalovic, T., Clunie, B., Harrott, A., Cetin, Y., Demirbek, M., Khoja, S., Eastwood, D., Dudley, E. and Hazir, S., Volatile organic compounds of *Metarhizium brunneum* influence the efficacy of entomopathogenic nematodes in insect control, *Biol. Control.*, 155, 104527 (2021).
- 22. Hussain, A., Tian, M.Y., He, Y.R. and Lei, Y.Y., Differential fluctuation in virulence and VOC profiles among different cultures of entomopathogenic fungi, *J. Invertebr. Pathol.*, 104(3), 166-171 (2010).
- 23. Isaka, M., Kittakoop, P., Kirtikara, K., Hywel-Jones, N.L. and Thebtaranonth, Y., Bioactive substances from insect pathogenic fungi, *Acc. Chem. Res.*, 38(10), 813-823 (2005).

- 24. Jeon, J.H., Kim, M.G. and Lee, H.S., Insecticidal activities of *Ruta chalepensis* leaves isolated constituent and structure-relationships of its analogues against *Sitophilus oryzae*, *J. Korean Soc. Appl. Biol. Chem.*, 56, 591-596 (2013).
- 25. Khoja, S., Eltayef, K.M., Baxter, I., Bull, J.C., Loveridge, E.J. and Butt, T., Fungal volatile organic compounds show promise as potent molluscicides, *Pest Manag. Sci.*, 75(12), 3392-3404 (2019).
- 26. Kulkarni, N.S. and Lingappa, S., Pathogenicity of entomopathogenic fungus, *Nomuraea rileyi* (Farlow) Samson on Lepidopterous pests, *Karnataka J. Agric. Sc.*, 15(2), 293-298 (2002).
- 27. Lee, S.J., Umano, K., Shibamoto, T. and Lee, K.G., Identification of volatile components in basil (*Ocimum basilicum* L.) and thyme leaves (*Thymus vulgaris* L.) and their antioxidant properties, *Food chemistry*, 91(1), 131-137 (2005).
- 28. Malik, A., Singh, N. and Satya, S., House fly (*Musca domestica*): a review of control strategies for a challenging pest, *Journal of environmental science and health part B*, 42(4), 453-469 (2007).
- 29. Mamatha, M., Studies on native isolates of *Metarhizium rileyi* (farl.) Samson on fall armyworm, *Spodoptera frugiperda* (j. E. Smith) in maize, *M.Sc. Thesis*, Univ. Agric. Sci. Raichur (India) (2021).
- 30. Manilal, A., Sujith, S., Selvin, J., Shakir, C. and Seghal Kiran, G., Antibacterial activity of *Falkenbergia hillebrandii* (Born) from the Indian coast against human pathogens. *Phyton (Buenos Aires).*, 1, 161-170 (2009).
- 31. Manjula, K. and Krishnamurthy, K.V.M., Efficacy of *Nomuraea rileyi* against different instars of *Spodoptera litura* and *Helicoverpa armigera*, *Ann. of Pl. Pro. Sci.*, 13(2), 347–350 (2005).
- 32. Mburu, D.M., Maniania, N.K. and Hassanali, A., Comparison of volatile blends and nucleotide sequences of two *Beauveria bassiana* isolates of different virulence and repellency towards the termite *Macrotermes michealseni*, *J. Chem. Ecol.*, 39, 101–108 (2013).
- 33. Mburu, D.M., Ochola, L., Maniania, N.K., Njagi, P.G.N., Gitonga, L.M., Ndung'U, M.W., Wanjoya, A.K. and Hassanali, A., Relationship between virulence and repellency of entomopathogenic isolates of *Metarhizium anisopliae* and *Beauveria bassiana* to the termite *Macrotermes michaelseni*. *J. Insect Physiol.*, 55, 774–780 (2009).
- 34. Miranpuri, G.S. and Khachatourians, G.G., Pathogenicity of *Beauveria bassiana* (Bals.) Vuill and *Verticillium lecanii* (Zimm.) towards blister beetle, *Lytta nuttali* say (Col: Meloidae), *J. Appl. Entomol.*, 118, 103-110 (1994).
- 35. Mnyone, L.L., Kirby, M.J., Mpingwa, M.W., Lwetoilera, D.W., Knols, B.G.J., Takken, W., Koenraadt, C.J.M. and Russel, T.L., Infection of *Anopheles gambiae* mosquitoes with entomopathogenic fungi: Effect of host age and blood feeding stage, *Parasitol. Res.*, 108, 317–322 (2011).

- 36. Murugesan, S., Senthilkumar, N., Rajeshkannan, C. and Vijayalakshmi, K.B., Phytochemical characterization of *Melia dubia* for their biological properties. *Der Chemica Sinica*, 4(1), 36-40 (2013).
- 37. Pedras, M.S., Irina Zaharia, L. and Ward, D.E., The destruxins: synthesis, biosynthesis, biotransformation and biological activity, *Phytochemistry* 59(6), 579-596 (2002).
- 38. Pimmental, D. and Perkins, J.H., Pest Control: Cultural and Environmental Aspects; AAAS Symposium; Westview Press: Boulder, CO, USA. p. 243 (1980).
- 39. Ponsankar, A., Vasantha-Srinivasan, P., Senthil-Nathan, S., Thanigaivel, A., Edwin, E.S., Selin-Rani, S., Kalaivani, K., Hunter, W.B., Alessandro, R.T., Abdel-Megeed, A. and Paik, C.H., Target and non-target toxicity of botanical insecticide derived from *Couroupita guianensis* L. flower against generalist herbivore, *Spodoptera litura* Fab. and an earthworm, *Eisenia foetida* Savigny, *Ecotoxicology and environmental safety*, 133, 260-270 (2016).
- 40. Prakash, G.V.S.B., Studies on the Entomopathogenic fungus *Metarhizium anisopliae* (Metschnikoff) for virulence against the two Lepidopteran insect pests Biochemical Characterization and expression of selected genes during pathogenesis, *Ph. D. Thesis*, Andhra University, Visakhapatnam, Andhra Pradesh, India (2008).
- 41. Prakash, B., Shukla, R., Singh, P., Kumar, A., Mishra, P.K. and Dubey, N.K., Efficacy of chemically characterized *Piper betle* L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity, *Int. J. Food Microbiol.*, 142, 114–119 (2010).
- 42. Ragavendran, C., Dubey, N.K. and Natarajan, D., *Beauveria bassiana* (Clavicipitaceae): a potent fungal agent for controlling mosquito vectors of *Anopheles stephensi, Culex quinquefasciatus* and *Aedes aegypti* (Diptera: Culicidae), *RSC Advances*, 7(7), 838-851 (2017).
- 43. Selin-Rani, S., Senthil-Nathan, S., Thanigaivel, A., Vasantha-Srinivasan, P., Edwin, E.S., Ponsankar, A., Lija-Escaline, J., Kalaivani, K., Abdel-Megeed, A., Hunter, W.B. and Alessandro, R.T., Toxicity and physiological effect of quercetin on generalist herbivore, *Spodoptera litura* Fab. and a non-target earthworm *Eisenia fetida* Savigny, *Chemosphere*, 165, 257-267 (2016).
- 44. Seth, R.K., Khan, Z., Rao, D.K. and Zarin, M., Flight Activity and Mating Behaviour of Irradiated *Spodoptera litura* (Lepidoptera: Noctuidae) Males and Their F1 Progeny for Use of Inherited Sterility in Pest Management Approaches, *Fla. Entomol.*, 99 (1), 119–130 (2016).
- 45. Sharmila, T., Manjula, K. and Krishna, T.M., Evaluation of oil formulations of *Nomuraea rileyi* (Farlow) Samson against *Spodoptera litura* under laboratory conditions, *Int. J. Plant Sci.*, 10(1), 29-32 (2015).
- 46. Singh, G. and Prakash, S., Evaluation of culture filtrates of *Culicinomyces clavisporus*: Myco adulticides for *Culex quinquefasciatus*, *Aedes aegypti* and *Anopheles stephensi*, *Parasitol. Res.*, 110, 267–272 (2010).

- 47. Socaci, S.A., Tofană, M., Socaciu, C. and Semeniuc, C., Optimization of HS/GC-MS method for the determination of volatile compounds from indigenous rosemary, *J. Agric. Process Technol.*, 15, 45-49 (2009).
- 48. Soni, N. and Prakash, S., Entomopathogenic fungus generated nanoparticles for enhancement of efficacy in *Culex quinquefasciatus* and *Anopheles stephensi*, *Asian Pac. J. Trop. Dis.*, 2, 356–361 (2012).
- 49. Subhash, A.R., Development and evaluation of formulations of Entomopathogenic fungus, *Metarhizium anisopliae* (Metschnikoff) Sorokin against Lepidopteran larvae. *Ph. D. Thesis*, Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra (India). p. 209 (2015).
- 50. Tan, K.H., Lim, S.K., Teng, S.M. and Teo, S.M., Effectiveness of 3-acetylpyridine against the brown planthopper, *Nilaparvata lugens* (Stål) (Homoptera: Delphacidae), *J. Econ. Entomol.*, 94(2), 469-474 (2001).
- 51. Varela, A. and Morales, E., Characterization of some *Beauveria bassiana* isolates and their virulence toward the coffee berry borer *Hypothenemus hampei*, *Invertebr. Pathol.*, 67, 147-152 (1996).
- 52. Vivekanandhan, P., Kavitha, T., Karthi, S., Senthil-Nathan, S. and Shivakumar, M.S., Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae), International journal of environmental research and public health, 15(3), p.440 (2018).
- 53. Vyas, N., Dua, K.K. and Prakash, S., Efficacy of *Lagenidium giganteum* metabolites on mosquito larvae with reference to nontarget organisms, *Parasitol. Res.*, 101(2), 385-390 (2007).
- 54. Wang, Q. and Xu, L., Beauvericin, a bioactive compound produced by fungi: a short review. *Molecules*, 17(3), 2367-2377 (2012).
- 55. Wang, X., Wang, X., Zhang, X., Xu, X., Zhang, H. and Zhang, C., 5-Aziridinopentanol from *Metarhizium anisopliae* induces oxidative stress and cell death in insects, *J. Insect Physiol.*, 75, 1-10 (2015).
- 56. Wekesa, V.W., Maniania, N.K., Knapp, M. and Boga, H.I., Pathogenicity of *Beauveria bassiana* and *Metarhizium anisopliae* to the tobacco spider mite *Tetranychus evansi, Exp. Appl. Acarol.*, 36, 41-50 (2005).
- 57. Werner, S., Polle, A. and Brinkmann, N., Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. *Appl. Microbiol. Biotechnol.*, 100, 8651-8665 (2016).
- 58. Wright, M.S., Raina, A.K. and Lax, A.R., A strain of the fungus *Metarhizium anisopliae* for controlling subterranean termites, *J. Econ. Entomol.*, 98(5), 1451-1458 (2005).

- 59. Xiao, Z., Li, Q., Niu, Y., Zhou, X., Liu, J., Xu, Y. and Xu, Z., Odoractive compounds of different lavender essential oils and their correlation with sensory attributes, *Ind. Crops Prod.*, 108, 748-755 (2017).
- 60. Yang, Z., Zhang, Z., Wang, J., Liu, X. and Li, X., N-butyl-N-propylacetamide: A promising new insecticide from *Metarhizium anisopliae*, *Pest Manag. Sci.*, 71(1), 12-19 (2015).
- 61. Yu, J.F., Li, C., Xu, J., Liu, J.H. and Ye, H., Male accessory gland secretions modulate female post-mating behavior in the moth *Spodoptera litura*, *J. Insect Behav.*, 27 (1), 105–116 (2014).