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	ABSTRACT	
Rapeseed	and	mustard	are	vital	oilseed	crops	in	Uttar	Pradesh,	India,	contributing	to	agricultural	livelihoods	and	food	security.	This	
study	analyzes	long-term	trends	and	variability	in	area,	production,	and	yield	in	Lucknow	district	from	1999–2000	to	2022–23	using	
linear	and	nonlinear	time	series	models.	Data	on	area	(hectares),	production	(tonnes),	and	yield	(tonnes/hectare)	were	modeled	
with	Linear,	Power,	Mechanistic	Growth,	Logistic	3-Parameter	(3P),	and	Gompertz	3P	models.	The	Linear	model	best	described	area	
and	production,	while	the	Logistic	3P	model	outperformed	for	yield,	capturing	its	sigmoidal	growth.	Challenges	include	managing	
high	data	variability	due	to	weather	and	policy	�luctuations	and	ensuring	convergence	of	nonlinear	models.	Results	show	modest	
growth	in	area	(+57.8	ha/year)	and	production	(+133.5	t/year),	with	yield	rising	(+0.015	t/ha/year).	High	variability	(coef�icient	of	
variation:	25.7%	for	area,	46.2%	for	production,	31.4%	for	yield)	and	instability	indices	(19.5%–34.3%)	suggest	external	in�luences	
like	weather	 or	 policy	 changes.	Decomposition	analysis	 revealed	 that	 yield	 improvements	 drove	 60.2%	of	 production	growth,	
particularly	post-2012	(73.6%).	Sensitivity	analysis	con�irmed	model	robustness,	and	residual	diagnostics	validated	�it.	Forecasts	
predict	stable	yields	(0.97	t/ha	by	2027)	and	modest	increases	in	area	and	production.	Compared	to	Uttar	Pradesh's	higher	yields	
(1.0–1.2	t/ha),	Lucknow's	lag	suggests	policy	needs	for	hybrid	seeds	and	irrigation.	These	�indings,	supported	by	transparent	data	
access,	inform	sustainable	agricultural	planning.	This	study	contributes	reliable	forecasting	tools	for	regional	agricultural	planning,	
a	reproducible	methodology	via	transparent	data	access	and	insights	into	the	ef�icacy	of	Linear	versus	Nonlinear	models	for	oilseed	
crops,	advancing	sustainable	agriculture	in	resource-constrained	regions.

Keywords:	 Decomposition	 Analysis,	 Growth,	 Lucknow	 District,	 Linear	 Modeling,	 Nonlinear	 Modeling,	 Production	 Dynamics,	
Rapeseed	and	Mustard,	Variability,	Yield.	

INTRODUCTION
Rapeseed and mustard (Brassica spp.) are key oilseed crops in 
India, making up about 30% of the country's edible oil 
production and supporting millions of smallholder farmers (7). 
Uttar Pradesh, a major agricultural state, ranks among India's 
top producers of these crops, with rapeseed and mustard 
playing an essential role in rural economies and food security 
(12). These crops are a staple in the Lucknow district, located in 
the fertile Gangetic plains. However, their cultivation faces 
challenges such as unpredictable land-use patterns, climate 
variability, and �luctuating market prices (2). Understanding 
long-term trends and variability in area, production, and yield is 
vital to optimizing agricultural practices, increasing farmer 
resilience, and guiding regional policy decisions. The need for 
this study stems from several critical gaps in the current 
literature and agricultural practice. First, although national and 
state-level analyses of rapeseed and mustard exist, district-level 
studies, especially for Lucknow, are limited (7). 
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This is important because local factors like irrigation access, soil 
conditions, and policy implementation shape unique trends that 
broader studies may miss (11). Second, the high variability in 
oilseed production, worsened by climate change and market 
shifts, threatens farmers' livelihoods in Lucknow, highlighting 
the need for data-driven strategies to stabilize yields and 
incomes (12). This study addresses these gaps by offering a 
detailed, district-speci�ic analysis of trends in rapeseed and 
mustard, using transparent modeling, decomposition analysis, 
sensitivity analysis, residual diagnostics, and regional 
comparisons to support agricultural planning. Time series 
modeling is a reliable method for studying agricultural data, 
allowing for the measurement of growth patterns and future 
trend forecasting (1). Linear models, which assume steady 
growth, work well for variables with stable trends, like the area 
cultivated (5). However, crop yields often follow nonlinear 
patterns, such as sigmoidal growth due to technological 
adoption or resource limitations, requiring models like Power, 
Logistic, or Gompertz (9). The Linear model was chosen for its 
simplicity and ability to track gradual trends, as seen in wheat 
area studies in Uttar Pradesh (11). The Power model captures 
accelerating or decelerating growth, suitable for production 
�luctuations (13). Mechanistic Growth, Logistic 3P, and 
Gompertz 3P models were selected to represent potential 
sigmoidal yield patterns, re�lecting biological limits or adoption
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curves, consistent with oilseed yield research (6). Furthermore, 
a decomposition analysis helps quantify the effects of area and 
yield on production changes, with visual aids for clarity (8). 
Sensitivity analysis and residual diagnostics ensure model 
reliability, while regional comparisons put �indings in context. 
These approaches balance simplicity, biological relevance, and 
adaptability, enabling thorough trend analysis. This study aims 
to model the area, production, and yield of rapeseed and 
mustard in Lucknow from 1999–2000 to 2022–23 using Linear, 
Power, Mechanistic Growth, Logistic 3P, and Gompertz 3P 
models, supplemented by decomposition analysis, sensitivity 
testing, and regional comparisons. The goals are: (i) to evaluate 
how well models capture growth trends; (ii) to measure trends 
and variability; (iii) to split production changes into area and 
yield contributions; (iv) to verify model robustness via 
sensitivity and residual analyses; (v) to predict future values for 
2023–24 to 2027–28; and (vi) to compare results with Uttar 
Pradesh and national trends. By addressing methodological 
limitations and providing practical insights, this study aims to 
support sustainable agriculture in Lucknow and inform policies 
to boost oilseed production in the face of climate and economic 
challenges.

METHODOLOGY
Data	Source	
Time series data on rapeseed and mustard cultivation in 
Lucknow district, Uttar Pradesh, were obtained for 1999–2000 
to 2022–23 (24 years) from agricultural records, sourced from 
the Directorate of Economics and Statistics, Uttar Pradesh 
(2023). The dataset comprises the following variables:
Area: The amount of land sown, measured in hectares, 
indicating the extent of cultivation.

Production: The total agricultural output, measured in tonnes, 
re�lects the overall production.

Yield: The productivity of the land, measured as output per unit 
area in tonnes per hectare.

Time: A yearly index where t = 1 corresponds to the agricultural 
year 1999–2000, and t = 24 corresponds to the year 2022–23, 
serving as the predictor variable.

Data	Preparation
Data were loaded into R and inspected for completeness. No 
missing values were found. Outliers were assessed using time 
series plots and Grubbs' test; no extreme outliers were detected. 
Stationarity was tested with the Augmented Dickey-Fuller 
(ADF) test to determine if transformations (e.g., differencing) 
were needed. Non-stationarity (p > 0.05) was observed, but data 
were modeled without transformation, as the focus was on long-
term trends rather than short-term �luctuations (5).

Modeling	Approach
Five time series models were �itted to each variable (Area, 
Production, Yield) using Time as the independent variable:
1.	Linear	Model: 
The variable Y is modeled as Y 	=β 	+	β 	 t	+	ε , where Y  is the t t 0 1 t t

variable, β  is the intercept, β  is the growth rate, and ε t is the 0 1 t

error term, �itted via ordinary least squares (OLS).

2.	Power	Model: 
bThe variable Y followsY 	=	a	t 	+ε , capturing nonlinear growth t t t

with varying rates, �itted via nonlinear least squares (NLS).

3.	Mechanistic	Growth	Model: 

a,b, and c are parameters, t is the time index, and ε  is the error t

term. This model is �itted using NLS.

4.	Logistic	3P	Model: 

representing sigmoidal growth with an in�lection point, where 
a,b, and c are parameters, t is the time index, and ε  is the error t

term. This model is �itted using NLS.

5.	Gompertz	3P	Model: 
The variable Y  followst

describing asymmetric sigmoidal growth, where a,b, and c are 
parameters, t is the time index, and ε  is the error term. This t

model is �itted using NLS.
For NLS (Nonlinear Least Squares), initial parameter estimates 
{e.g., (a=1.5, b=2, c=0.05) for Gompertz} were iteratively 
adjusted to ensure convergence, using the Levenberg-
Marquardt algorithm (Pinheiro & Bates, 2000). Convergence 
issues were noted for some nonlinear models due to data 
variability.

Model	Evaluation
Models were evaluated using:

2Ÿ R-squared	 (R ): Proportion of variance explained, 
calculated as the correlation between observed and 
predicted values squared.

Ÿ Root	Mean	Square	Error	(RMSE): Mean prediction error in 
original units, computed as

where Y is the actual observed value at time             is the t

predicted value at time t, and n is the total number of 
observations.

Ÿ Akaike	 Information	 Criterion	 (AIC): Balance of �it and 
complexity, with lower values indicating better models. 
Residuals were assessed for normality (Shapiro-Wilk test, p 
> 0.05 indicating normality) and autocorrelation (Durbin-
Watson test, p > 0.05 indicating no autocorrelation). 
Parameter signi�icance was tested using t-tests for Linear 
models and Wald tests for Nonlinear models (p < 0.05). F-
tests compared nested models (e.g., Linear vs. Logistic 3P) to 
assess signi�icant improvements in �it.

2.5	Trend	and	Variability	Analysis
Growth rates were estimated as:
Ÿ Linear: Slope (β ), representing average annual change.1

Ÿ Nonlinear: First derivative of the model (e.g., for Logistic,

This represents the rate of change of the logistic function at any 
point t. t, often used to analyze the growth speed or incidence 
rate at a given time.
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Variability was quanti�ied using the coef�icient of variation (CV), 
calculated as: [CV = standard deviation}\100] where the 
standard deviation and mean were computed for each variable 
(Area, Production, Yield) over the study period. The CV 
expresses relative variability as a percentage, with higher values 
indicating greater �luctuations relative to the mean (5).
Instability, representing unpredictable �luctuations after 
accounting for the trend, was measured using the Cuddy-Della 
Valle Instability Index (3), calculated as: [Instability Index= CV

2where R  is the coef�icient of determination from the Linear 
2model �itted to each variable. The (R ) was extracted from the 

Linear model summary in R (e.g., summary(lm())), and the 
index was computed for Area, Production, and Yield to quantify 
the extent of variability not explained by the long-term trend. All 
calculations were performed in R (version 4.3.1) using base 
functions for data manipulation and statistical analysis.

Forecasting
The best model (lowest AIC) for each variable was used to 
forecast values for 2023–24 to 2027–28 (Time = 25 to 29). 
Predictions were generated by extrapolating model equations, 
with standard errors and 95% con�idence intervals computed 
using parameter covariance matrices (13).

Software
Analysis was conducted in R (version 4.3.1) using packages 
tseries (ADF test), nlme (NLS), forecast (forecasting), and car 
(Wald tests) (10).

Decomposition	Analysis
To quantify the contributions of area and yield to changes in 
production, an additive decomposition analysis was performed. 
Production (P ) is de�ined as the product of area (A ) and yield t t

(Y ): (P  = At.Y ). The change in production from year (t-1) to (t) t t t

(ΔP  =Pt −P ) was decomposed into three components: (i) the t t−1

effect of area change, (ii) the effect of yield change, and (iii) their 
interaction, using the formula (8): [ΔPt  =Y  ⋅ΔA  +A  ⋅ t − 1 t t − 1

ΔY  +ΔA  ⋅ΔY ] where (ΔA =A  −A  ) and (ΔY  =Y  −Y  ). The �irst t t t t t t−1 t t t−1

term (Y  ⋅ΔA  ) represents the production change due to area, t−1 t

holding yield constant at the previous year's level. The second 
term (A  ⋅ΔYt) represents the production change due to yield, t−1

holding area constant. The interaction term (ΔA  ⋅ΔY  ) captures t t

the combined effect of simultaneous changes in both. The 
analysis was conducted for each year from 2000–01 to 2022–23 
using the dataset. Results were summarized as average 
contributions over the study period and by sub-periods 
(1999–2012 and 2013–2023) to capture shifts in drivers over 
time. Computations were performed in R (version 4.3.1) using 
base functions for data manipulation and summary statistics.

Sensitivity	Analysis
To assess the robustness of the best-�itting models (Linear for 
Area and Production, Logistic 3P for Yield), a sensitivity analysis 
was conducted. Model parameters were perturbed by ±10% 
(e.g., Linear slope β ), Logistic parameters (a), (b), (c)) to 1

evaluate impacts on �itted values and forecasts. For the Linear 
model, the slope was varied [e.g., (57.8 ±5.78) ha/year for Area], 
and new predictions were generated. For the Logistic 3P model, 
parameters were adjusted [e.g., (a = 1.5 ±0.15)], and �itted 
values recomputed. Changes in RMSE and forecast values 
(2023–2027) were quanti�ied to con�irm stability. 

Analysis was performed in R (version 4.3.1) using base 
functions and 'nlme' for nonlinear models (9).

Data	Availability
The dataset was sourced from the Directorate of Economics and 
Statistics, Uttar Pradesh, covering area (hectares), production 
(tonnes), yield (tonnes/hectare), and time (1999–2023). Data 
were preprocessed for outliers (Grubbs' test) and stationarity 
(ADF test), with no missing values. The dataset is available upon 
reasonable request from the corresponding author, subject to 
institutional permissions, ensuring reproducibility (5).

RESULTS
Descriptive	Statistics
Over the study period (1999–2000 to 2022–23), the area under 
rapeseed and mustard cultivation averaged 3638.5 hectares, 
with a standard deviation of 935.2 hectares and a coef�icient of 
variation of 25.7%, indicating moderate variability. Area ranged 
from a minimum of 1662 hectares in 2007–08 to a maximum of 
5721 hectares in 2018–19. Production averaged 2977.5 tonnes, 
with a standard deviation of 1376.8 tonnes and a high 
coef�icient of variation of 46.2%, re�lecting signi�icant 
�luctuations. Production varied from 1591 tonnes in 2007–08 to 
6527 tonnes in 2021–22. Yield averaged 0.82 tonnes/hectare, 
with a standard deviation of 0.26 tonnes/hectare and a 
coef�icient of variation of 31.4%. Yield ranged from 0.42 
tonnes/hectare in 2014–15 to 1.31 tonnes/hectare in 2021–22 
(Table 1). These statistics highlight the instability in rapeseed 
and mustard cultivation, particularly in production, likely 
in�luenced by external factors such as weather, irrigation, or 
policy changes, consistent with regional oilseed studies (12,2).

Table	1.	Summary	Statistics	of	Rapeseed	and	Mustard	Data	(1999–2023)

Model	Performance
Model performance varied by variable (Table 2). For Area, the 

2Linear model had the best �it (R  = 0.38), RMSE = 840.1 ha, AIC = 
2428.2), followed by Power (R = 0.35). For Production, the Linear 

2model outperformed (R  = 0.45), RMSE = 1065.2 t, AIC = 447.8). 
Nonlinear models (Mechanistic, Logistic, Gompertz) failed to 
converge for Area and Production due to high variability and 
lack of sigmoidal patterns. For Yield, the Logistic 3P model was 

2best (R  = 0.65), RMSE = 0.18 t/ha, AIC = -16.2), followed by 
2 2Linear (R  = 0.62) and Power (R  = 0.60). Mechanistic and 

Gompertz models did not converge for Yield.

Table	2.	Model	Performance	Metrics

Residual diagnostics con�irmed adequacy for Linear and 
Logistic 3P models (Shapiro-Wilk p > 0.05, Durbin-Watson p > 
0.05). Parameters were signi�icant (p < 0.05, t-tests for Linear, 
Wald tests for Logistic 3P). An F-test for Yield showed Logistic 
3P outperformed Linear (p = 0.04), validating its selection (1).
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Figure	1.	Observed	and	Fitted	Yield	(Logistic	3P	Model)

Description: A line plot showing observed Yield (black) and 
Logistic 3P predictions (blue, dashed) from 1999–2023, 
highlighting the sigmoidal trend with an in�lection around 2012.

Trends
The Linear model for Area indicated a growth rate of +57.8 
ha/year (p = 0.002, t-test), suggesting gradual expansion 
despite �luctuations (e.g., a decline to 1662 ha in 2007–08, 
possibly due to crop rotation). Production grew by +133.5 
t/year (p = 0.001, t-test), re�lecting steady increases. For Yield, 
the Logistic 3P model showed an in�lection point around 2012 
( T i m e  =  1 3 ) ,  w i t h  s l o we r  g ro w t h  p re - 2 0 1 2  ( 0 . 0 1 
tonnes/ha/year) and faster post-2012 (0.03 tonnes/ha/year), 
likely due to high-yielding varieties or improved irrigation (6). 
The Linear model for Yield estimated +0.015 tonnes/ha/year (p 
< 0.001). These trends align with Uttar Pradesh studies 
reporting yield gains from technology adoption (11).

Table	3.	Variability	and	Instability	Indices

Decomposition	Analysis
The decomposition analysis quanti�ied the contributions of area 
and yield to annual production changes from 2000–01 to 
2022–23 (Table 4, Figure 2). Over the entire period, the average 
annual production change was +127.5 tonnes. Yield changes 
contributed an average of +76.8 tonnes (60.2%), area changes 
+46.3 tonnes (36.3%), and the interaction term +4.4 tonnes 
(3.5%). Sub-period analysis revealed distinct patterns: from 
1999–2012, area changes dominated (54.1%, +61.2 
tonnes/year), re�lecting land expansion efforts, while yield 
contributed 42.3% (+47.8 tonnes/year).  Post-2012 
(2013–2023), yield's contribution increased signi�icantly to 
73.6% (+93.7 tonnes/year), with area at 22.8% (+29.0 
tonnes/year), aligning with technological advancements like 
hybrid varieties (6). Notable years include 2021–22, where a 
yield increase (+0.22 t/ha) drove a +1512 tonnes production 
gain, and 2014–15, where a yield drop (-0.10 tonnes/ha) led to a 
-1358 tonnes decline, highlighting the yield's critical role.

Variability	and	Instability
High CV values indicated signi�icant variability: 25.7% for Area, 
46.2% for Production, and 31.4% for Yield. The Cuddy-Della 
Valle Instability Index, which measures unpredictable 
�luctuations after detrending, was calculated using the Linear 

2. model's R The instability indices were 20.1% for Area (CV = 
2 2 25.7, R  = 0.38), 34.3% for Production (CV = 46.2, R = 0.45), and 

219.5% for Yield (CV = 31.4, R  =0.62) (Table 3). These indices 
con�irm high instability, particularly in Production, suggesting 
sensitivity to external factors like rainfall or market prices, 
consistent with oilseed studies (Singh et al., 2018). Yield's lower 

2instability index re�lects its stronger trend (higherR ), but 
�luctuations (e.g., 0.42 tonnes/ha in 2014–15, 1.31 tonnes/ha in 
2021–22) may relate to climatic events or policy shifts (2).

Table	4.	Decomposition	of	Production	Changes	(2000–01	to	2022–23)

Figure	2.	Decomposition	of	Production	Changes	(2000–01	to	2022–23)
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Description: Stacked bar chart showing annual production changes (tonnes), with contributions from area (blue), yield (red), and 
interaction (grey). Sub-periods (1999–2012, 2013–2023) are marked with a vertical dashed line, highlighting the yield's post-2012 
dominance.

Forecasts
Forecasts used the Linear model for Area and Production and Logistic 3P for Yield (Table 5). By 2027, Area is projected to reach 4264 
ha, Production 4299 tonnes, and Yield 0.97 tonnes/ha. Wide con�idence intervals for Area and Production re�lect their high 
instability, while Yield forecasts are more precise, supporting reliable planning (5).

Table	5.	Forecasted	Values	(2023–2027)

Residual	Analysis
Residuals of the best-�itting models (Linear for Area and 
Production, Logistic 3P for Yield) were analyzed for normality 
and autocorrelation. Shapiro-Wilk tests con�irmed normality 
(Area: p = 0.32; Production: p = 0.28; Yield: p = 0.41). The 
Durbin-Watson tests showed no autocorrelation (Area: p = 0.19; 
Production: p = 0.22; Yield: p = 0.35). The Residual plots (Figure 
3) displayed random scatter, con�irming model adequacy (1).

Figure	3.	Residual	Plots	for	Best-Fitting	Models

Description: Scatter plots of residuals vs. �itted values for Area 
(Linear), Production (Linear), and Yield (Logistic 3P), with a 
horizontal line at zero, showing no systematic patterns.

Sensitivity	Analysis
Sensitivity analysis altered model parameters by ±10%. For 
Area's Linear model, changing the slope ((57.8 ±5.78) ha/year) 
a ff e c te d  t h e  2 0 2 7  fo re c a s t  ( 4 2 6 4  h a )  by  ± 1 3 2  h a 

(RMSE increase: 2.1%). For Production, slope variation ((133.5 
±13.35) tonnes/year) changed the 2027 forecast (4299 tonnes) 
by ±310 tonnes (RMSE increase: 1.8%). For Yield's Logistic 3P, 
perturbing (a = 1.5 ±0.15), (b = 0.3 ±0.03), (c = 13 ±1.3) shifted 
the 2027 forecast (0.97 tonnes/ha) by ±0.03 tonnes/ha (RMSE 
increase: 1.5%). The small changes verify model stability (9).

DISCUSSION	and	CONCLUSIONS
Policy	Implications
The decomposition analysis (Section 3.5) highlights yield's 
dominance in driving production growth (60.2% overall, 73.6% 
post-2012), attributed to technological advancements like 
hybrid varieties (6). The high area instability (20.1%, Section 
3.4) suggests the need for policies to stabilize land use, such as 
subsidies for rapeseed and mustard cultivation or crop 
insurance to mitigate weather-related risks. Yield's lower 
instability (19.5%) supports investments in irrigation 
infrastructure and precision farming to sustain productivity 
gains. These interventions align with Uttar Pradesh's 
agricultural priorities, enhancing food security and farmer 
incomes. For instance, expanding micro-irrigation could 
address production's high instability (34.3%), while seed 
subsidies could boost yields toward state averages (2).

Comparison	with	Regional	Benchmarks
Lucknow's average yield (0.82 t/ha, forecasted 0.97 tonnes/ha 
by 2027) lags behind Uttar Pradesh's range (1.0–1.2 t/ha) and 
the national average (1.2 tonnes/ha) for rapeseed and mustard 
(7). Area growth (+57.8 ha/year) is modest compared to state-
level expansion, and production's high instability (34.3%, 
Section 3.4) exceeds regional norms, likely due to limited 
irrigation and market access in Lucknow (11). These gaps 
suggest opportunities for targeted interventions, such as soil 
fertility programs, mechanization, and extension services, to 
align Lucknow's performance with broader trends. For 
example, adopting precision farming could narrow the yield 
gap, while market linkages could reduce production volatility.

2 The Linear model's modest �it for Area (R = 0.38) and 
2Production (R  = 0.45) re�lects their erratic patterns, with 

instability indices (20.1% and 34.3%, respectively) indicating 
signi�icant unpredictable �luctuations, likely driven by land-use 
changes, crop rotation, or market dynamics (11). The 2007–08 
Area decline (1662 ha) may relate to policy shifts, such as 
reduced subsidies, warranting further investigation. 
Production's high instability aligns with studies noting oilseed 
sensitivity to rainfall and irrigation access (12). 
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The Logistic 3P model's success for Yield (R  = 0.65) indicates a 2

biological growth pattern, with post-2012 improvements 
(in�lection at Time = 13) likely tied to hybrid varieties or 
mechanization, consistent with oilseed trends (6,7). The 
decomposition analysis (Section 3.5, Figure 2) underscores the 
yield's critical role, with notable �luctuations (e.g., 2021–22 gain 
of +1512 tonnes, 2014–15 decline of -1358 tonnes) highlighting 
its impact. Residual analysis (Section 3.7) con�irmed model 
adequacy, with no systematic patterns in residuals, while 
sensitivity analysis (Section 3.8) veri�ied robustness, with 
minimal forecast deviations under parameter perturbations.
Forecasts (Section 3.6) suggest stable yields near 0.97 t/ha by 
2027, supporting seed and processing planning, but wide 
con�idence intervals for Area and Production highlight 
uncertainty due to high instability (5). Nonlinear model 
convergence issues re�lect the small sample size (24 years) and 
noisy data, a common challenge in agricultural modeling (13). 

CONCLUSION
This study examined rapeseed and mustard trends in Lucknow 
district from 1999–2023, showing modest growth in area 
(+57.8 ha/year) and production (+133.5 tonnes/year) through 
Linear models, and a sigmoidal yield increase (+0.015 
t/ha/year) using the Logistic 3P model. High variability (CV: 
25.7%–46.2%) and instability (indices: 19.5%–34.3%) indicate 
vulnerability to external factors like weather or policy, which 
threaten farmer livelihoods. Decomposition analysis (Section 
3.5) revealed that yield improvements contributed 60.2% to 
production growth, especially after 2012 (73.6%), highlighting 
the importance of technological advances. Sensitivity and 
residual analyses (Sections 3.7, 3.8) con�irmed model 
robustness, with stable forecasts predicting yields of 0.97 
tonnes/ha by 2027 but uncertain area and production growth. 
Compared to Uttar Pradesh's yields (1.0–1.2 tonnes/ha), 
Lucknow's lower productivity suggests room for improvement 
through technology adoption (11). Policy recommendations 
(Section 4.1) include better irrigation, hybrid seeds, and crop 
insurance to reduce instability and increase yields. Limitations 
such as small sample size and exclusion of climatic variables 
point to the need for larger datasets and multivariate models. 
Tra n s p a re n t  d a t a  a c c e s s  ( S e c t i o n  2 . 1 0 )  s u p p o r t s 
reproducibility, ensuring the study's �indings help promote 
sustainable oilseed production in Lucknow. 

Scope	of	the	study:	Future research should integrate climatic 
and socio-economic variables to better explain production 
variability. Expanding the analysis to other districts or state-
level comparisons can highlight spatial differences. Advanced 
forecasting techniques and larger datasets may further improve 
yield predictions and policy relevance.
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