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	ABSTRACT	
Rice	yield	is	a	complex	quantitative	trait	in�luenced	by	multiple	interacting	components.	According	to	variance	analysis,	all	traits	had	
highly	signi�icant	differences,	indicating	enough	variability	for	selection.	The	largest	mean	squares	were	seen	in	grain	yield	(F	=	
245.50***),	days	to	50%	�lowering	(F	=	66.56***),	and	plant	height	(F	=	37.47***),	indicating	their	signi�icant	contribution	to	overall	
variation.	Grain	yield	(h2	=	99.60%,	GAM	=	28.13%)	and	�illed	grains	per	panicle	(h2	=	96.40%,	GAM	=	28.21%)	were	both	strongly	
controlled	by	additive	control,	indicating	high	heritability	across	traits	and	a	high	potential	for	direct	selection.	The	in�luence	of	non-
additive	gene	action	was	evident	in	the	low	GAM	but	high	panicle	length	and	tiller	number	heritability.	Days	until	50%	�lowering	and	
panicle	length	were	found	to	be	signi�icant	positive	direct	contributors	to	yield	by	correlation	and	path	analyses.	At	the	same	time,	
test	weight	and	�illed	grain	number	primarily	acted	indirectly.	The	tillering	ability,	�illed	grain	number,	�lowering	duration,	and	
panicle	architecture	were	 the	main	 contributors	 to	 61.51%	of	 the	 total	 variation	 in	 the	 �irst	 three	PCs	 captured	by	 principal	
component	analysis.	Three	groups	of	genotypes	were	created	using	hierarchical	clustering,	and	each	group	had	its	own	distinct	yield	
strategy:	Cluster	I	prioritized	heavier	grains	and	tillering,	Cluster	II	had	longer	panicles	and	higher	test	weight,	and	Cluster	III	had	
panicle	density	and	grain	number.	Several	high-yielding	outliers	were	 found	to	be	promising	donor	parents	(>8.8	t	ha⁻¹).	This	
integrated	method	offers	reliable	selection	indices	and	useful	donor	identi�ication	by	combining	genetic	parameters,	correlation,	
path,	PCA,	and	clustering.	The	results	directly	apply	to	rice	improvement	initiatives	by	ICAR	and	AICRIP	that	focus	on	resilient	and	
high-yielding	cultivars	for	irrigated	environments.

Keywords:	Irrigated	Rice;	Grain	Yield;	Heritability;	Genetic	Advance;	Path	&	correlation	Analysis;	Principal	Component	Analysis;	
Genetic	Diversity.

1.	Introduction
Over half of the world's population depends on rice (Oryza	
sativa L.), making it the most signi�icant cereal crop globally 
[45]. The anticipated 535.8 million tons of milled rice 
production in 2024–2025 will come primarily from Asia, with 
India overtaking China as the largest producer and top exporter 
with almost 147 million tons [47]. A staple of India's food and 
nutritional security, rice is grown on about 45 million hectares 
and yields an average of 4.1 t/ha. Grain quality, panicle 
architecture, �lowering time, and tillering ability are all 
polygenic traits heavily in�luenced by environmental factors, 
making it challenging to increase yield [7, 13]. Genetic 
variability, as measured by heritability, genotypic/phenotypic 
coef�icients of variation (GCV, PCV), and genetic advance as a
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percentage of mean (GAM), is essential for practical breeding [5, 
26]. While traits with high heritability but low GAM suggest non-
additive action, necessitating hybridization or recombination 
breeding, high heritability and GAM generally indicate additive 
gene control, favoring direct selection [40, 48]. Features 
controlled mainly by additive means, like test weight, panicle 
density, and the number of grains per panicle, continue to be 
excellent choices for selection [14, 12].
Gaining insight into the interactions between traits is essential 
to increasing yield. Panicle length, test weight, and �illed grain 
number typically have strong positive direct effects on yield, 
according to correlation and path analyses, whereas excessive 
tillering frequently lowers panicle productivity [55, 28]. By 
distinguishing between direct and indirect effects, path analysis 
improves trait dissection. For example, it demonstrates that 
plant height has little direct in�luence but can indirectly 
contribute through panicle traits [46]. Variability studies are 
strengthened by complementary multivariate tools: 
hierarchical clustering divides genotypes into groups that help 
identify heterotic parents, whereas PCA highlights important 
diversity axes, such as panicle architecture, grain number, and

https://aatcc.peerjournals.net/
https://aatcc.peerjournals.net/
https://aatcc.peerjournals.net/
https://www.crossref.org/services/crossmark/
https://aatcc.peerjournals.net/article-archive/volume-13-issue-4-2025/
https://aatcc.peerjournals.net/article-archive/volume-13-issue-4-2025/
https://aatcc.peerjournals.net/article-archive/volume-13-issue-4-2025/
https://aatcc.peerjournals.net/article-archive/volume-13-issue-4-2025/
https://orcid.org/0009-0005-4144-0736
https://orcid.org/register
https://orcid.org/register
https://orcid.org/register
https://orcid.org/register
https://orcid.org/register
https://orcid.org/register


	©	2025	AATCC	Review.	All Rights Reserved. 219.

	Ramya	Rathod	et	al.,	/	AATCC	Review	(2025)

tillering ability [35, 39]. Combined, these strategies improve the 
resolution of trait associations and provide breeders with 
robust selection criteria.
Integrating conventional variability estimates with 
contemporary tools has become crucial as sustainability and 
climate resilience gain more attention. Precise capture of trait 
expression is now possible thanks to developments in high-
throughput phenotyping, such as digital panicle analysis and 3D 
imaging [56]. However, limited environments, analytical scope, 
or traits limited most studies between 2020 and 2025 [9, 42]. In 
order to �ill this gap, the current study uses a single framework 
that combines ANOVA, genetic parameters, correlation, path 
analysis, PCA, and clustering to evaluate a diverse irrigated rice 
panel that represents major Indian ecologies. It �inds high-
yielding outliers (>8.8 t/ha) as possible donor parents for 
heterosis breeding, QTL pyramiding, selection index 
development, and de�ining effective selection indices. This work 
offers practical insights for ICAR and AICRIP programs by 
connecting variabil ity estimates with useful  donor 
identi�ication. It speeds up creating resilient, high-yielding 
cultivars appropriate for irrigated environments.

2.	MATERIALS	AND	METHODS
Plant	Material	and	Experimental	Site
Twenty-nine advanced rice genotypes developed by the Rice 
Breeding Section of RS & RRS, Rudrur, PJTAU, Telangana, India, 
were used in the study. The trial was carried out in Kharif 2024 
at RS & RRS, Rudrur (18°46′N, 77°53′E; 391 m above msl) under 
irrigated transplanted conditions.

Experimental	Design	and	Crop	Management
A Randomized Block Design (RBD) with three replications was 
used to assess the genotypes. Every entry was elevated in plots 
of 12 m², spaced 20 × 15 cm apart. To reduce non-genetic 
variance, puddled transplanted rice was grown using 
recommended agronomic techniques, such as land preparation, 
nutrient management, irrigation, and plant protection.

Data	Collection
Observations were recorded on days to 50% �lowering (DFF), 
plant height (PH, cm), number of tillers per plant (NT), panicles 
per m² (NP), panicle length (PL, cm), �illed grains per panicle 
(NFG/P), test weight (TW, g), and grain yield (GY, kg ha⁻¹). Data 
were recorded from 10 randomly selected competitive plants 
per replication, NP on a unit area basis, and GY at the plot level 
(converted to ha⁻¹). Border plants were excluded.

Statistical	Analysis
The Randomized Block Design (RBD) model was used to 
perform analysis of variance (ANOVA) to determine whether 
genotype differences were signi�icant [42]. In accordance with 
[5, 16], the following genetic variability parameters were 
estimated: broad-sense heritability (h²b), genetic advance as a 
percentage of mean (GAM), and genotypic and phenotypic 
coef�icients of variation (GCV, PCV). Path coef�icient analysis 
was used to separate these associations into direct and indirect 
effects on grain yield in accordance with [51, 59], while 
genotypic and phenotypic correlation coef�icients were 
calculated in accordance with [60]. Hierarchical clustering was 
based on Ward's minimum variance method using Euclidean 
distance [49], and principal component analysis (PCA) was 
carried out in accordance with [18, 17].

Software	and	Packages
R v4.5.1 was used for all analyses [32]. Base R, correlation and 
path analyses with agricolae and lavaan, PCA with FactoMineR 
and factoextra, and clustering with statistics were used to 
calculate genetic variability. ggplot2 was used to create 
visualizations such as histograms, boxplots, dendrograms, and 
PCA biplots [50].

RESULTS	AND	DISCUSSION
2.	ANOVA

Table	1.	Analysis	of	variance	(ANOVA)	for	yield	and	yield-contributing	traits

For all traits examined, the ANOVA results showed highly 
signi�icant differences between the genotypes (Table 1), 
indicating substantial genetic variability in the experimental 
material. Grain yield and days to 50% �lowering had the highest 
mean square values (F = 245.50* and F = 66.56*), suggesting 
that genetic factors were the primary source of variation, 
making these traits highly suitable for selection in breeding 
programs. Signi�icant differences in �lowering and yield 
characteristics and their importance for productivity and 
adaptation have also been documented in previous studies on 
cereals [46, 7].
Along with the number of spikelets and grains produced, there 
were signi�icant changes in plant height (F = 37.47*) and panicle 
length (F = 5.61*), both critical for biomass production. Test 
weight (F = 30.27*) and the number of �illed grains per panicle 
(F = 27.50*) showed notable variability, highlighting their 
importance for �inal yield determination. The number of tillers 
per plant (F = 2.80) contributes signi�icantly to the bulk density 
of the panicle but shows limited genetic variability, re�lecting 
stronger environmental in�luence. These �indings are consistent 
with earlier research that emphasized spike weight and grain 
number as key determinants of yield variability in rice and 
wheat [31, 42].
Most traits did not exhibit signi�icant replication effects, which 
indicates that the observed differences were genetic rather than 
environmental. Their importance for breeding is highlighted by 
the high variability observed for days to 50% �lowering, plant 
height, panicle length, number of �illed grains per panicle, test 
weight, and number of panicles per m². The most crucial 
selection factor is still grain yield, which is polygenic and highly 
variable. Similar results were found in multi-environment trials, 
where the component traits contributed directly and indirectly 
to yield variation [9, 4]. These �indings suggest that the 
examined germplasm possesses suf�icient variability to serve as 
a valuable resource for developing high-yielding cultivars.

2.1. GENETIC	PARAMETERS	OF	VARIABILITY
Days	to	50%	�lowering	(DFF)
The average number of days to 50% �lowering was 94.59, 
ranging from 88 to 100 days (Table 2). A narrow genetic base 
was suggested by the slight difference between GCV (2.62%) 
and PCV (2.64%). 



	©	2025	AATCC	Review.	All Rights Reserved. 220.

	Ramya	Rathod	et	al.,	/	AATCC	Review	(2025)

Genetics played a signi�icant role in the trait's high heritability (98.50%) and low GAM (5.35%), but the scope of improvement was 
constrained by its limited variability. Fixation of alleles or non-additive gene action frequently causes high heritability with low GAM 
[26, 5]. Similar �indings in rice were reported in [43, 21].

Table	2.	Genetic	Variability	Estimates	for	Yield	and	Yield-Related	Traits	in	Rice	Genotypes.

Plant	height	(PH)
Plant height (PH) ranged from 105 to 138 cm, averaging 117.78 
cm (Table 2). It displayed high heritability (97.30%), moderate 
GAM (11.38%), and moderate PCV (5.68%) and GCV (5.60%). 
According to these �indings, selection is effective even though 
genetic gain may be small because additive control 
predominates. Similar results were reported in [11, 2].

Number	of	tillers	per	plant	(NT/pl)
The average number of tillers per plant (NT/Pl) was 8.67, 
ranging from 8 to 10 (Table 2). It showed low GAM (6.44%), 
moderate heritability (64.90%), lower GCV (3.88%), and 
moderate PCV (4.82%). This suggests a signi�icant impact of the 
environment, which diminishes the ef�icacy of early-generation 
selection. Similar �indings were reported in [54, 10].

Number	of	panicles	per	m²	(NP/m²)
The average number of panicles per m² (NP/m²) was 352.87, 
ranging from 272 to 398 (Table 2). It showed moderate GAM 
(8.53%), PCV (5.25%), heritability (78.80%), and GCV (4.66%). 
Recurrent selection is helpful because, despite the apparent 
effects of the environment, selection can be somewhat 
successful under partial additive control. Similar �indings were 
reported in [34, 30].

Panicle	length	(PL)
Panicle length (PL) had a low GCV (3.78%), PCV (4.17%), GAM 
(7.07%), and high heritability (82.30%), with an average of 
24.01 cm and a range of 21–26 (Table 2). Limited variability 
prevents direct selection from improving despite high 
heritability, indicating non-additive control and the necessity of 
hybridization. Similar �indings were reported in [41, 8].

Number	of	�illed	grains	per	panicle	(NFG/P)
The average number of �illed grains per panicle (NFG/P) was 
297.49, ranging from 181 to 396 (Table 2). It showed very high 
heritability (96.40%), high GCV (13.95%), PCV (14.21%), and 
GAM (28.21%). These results indicate strong additive control, 
making grain number selection highly effective. Similar �indings 
were reported in [48, 36].

Test	weight	(TW)
Test weight (TW) ranged from 11 to 16 g, averaging 13.64 g 
(Table 2). It showed moderate GCV (7.59%) and PCV (7.70%), 
very high heritability (97.20%), and moderate GAM (15.42%). 
The close alignment of GCV and PCV suggests little 
environmental in�luence, while high heritability coupled with 
moderate GAM con�irms its potential for steady improvement 
through direct selection. Similar observations were reported in 
[10, 37].

Grain	yield	(GY):
The average grain yield (GY) was 6633.94 kg/ha, ranging from 
4527 to 8889 kg/ha (Table 2). It showed high GAM (28.13%), 
very high heritability (99.60%), and high GCV (13.68%) and 
PCV (13.71%). These values demonstrate that yield is the most 
reliable trait for direct selection because it is strongly heritable 
and predominantly governed by additive gene action. The 
combination of high heritability and GAM ensures strong 
prospects for genetic gain across environments. Similar �indings 
were reported in [40, 38].
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Figure	1.	The frequency distribution of 29 rice genotypes for yield and yield-related characteristics. (a) NP/m²: number of panicles 
per square meter; (b) NFG/P: number of �illed grains per panicle; (c) GY: grain yield (kg/ha); (d) DFF: days to 50% �lowering; (e) TW: 
test weight (g); (f) PL: panicle length (cm); (g) PH: plant height (cm); and (h) NT/Pl: number of tillers per plant.
Most genotypes clustered between 340 and 365, indicating a unimodal distribution of panicles per square meter (NP/m²). There 
were donors with larger sink sizes, as evidenced by the concentration of �illed grains per panicle (NFG/P) between 285 and 315, and a 
subset of genotypes exceeding 330. The distribution of grain yield (GY) was comparatively wider, with most entries falling between 
6.4 and 7.3 t ha⁻¹. However, a few genotypes showed exceptionally high performance (>8.5 t ha⁻¹), indicating that there is still plenty 
of room for yield improvement.
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Table	3.	Genotypic	(rg)	and	Phenotypic	(rp)	Correlation	Coef�icients	for	Yield	and	Yield-Related	Traits	in	Rice	Genotypes

Days to 50% �lowering (DFF) showed a narrow distribution (92–96 days) with a few early- and late-�lowering outliers, offering 
opportunities for phenological diversi�ication. Test weight (TW) was moderately variable (13–15 g), with distinct low (~11–12 g) 
and high (~16 g) classes, while panicle length (PL) showed limited variability (23–25 cm). Plant height (PH) exhibited a bimodal 
tendency, with peaks around 116–121 cm and minor groups at the extremes, providing useful variability for stature ideotypes. 
Tillers per plant (NT) displayed the least variation, tightly concentrated around 8.5–9.0, indicating that tillering is under more 
stabilizing selection than other traits.

b.	CORRELATION	ANALYSIS

Note: DFF = Days to 50% Flowering; PH = Plant Height; NT/Pl. = 
Number of Tillers per Plant; NP/m² = Number of Panicles per 
m²; PL = Panicle Length; NFG/P = Number of Filled Grains per 
Panicle; TW = Test Weight; GY = Grain Yield. Values outside 
parentheses are phenotypic correlations (rp), and inside are 
genotypic correlations (rg). Signi�icance levels: * p < 0.05, ** p < 
0.01, *** p < 0.001.
Plant height and days to 50% �lowering were signi�icantly 
positively correlated at both the genotypic and phenotypic 
levels, showing that taller plants tended to �lower later (Table 3). 
Similar observations have been reported in aerobic and 
irrigated rice, where �lowering duration was positively 
associated with plant vigor [58, 46].
Grain �illing and density depend heavily on panicle structure, as 
shown by the positive correlation between test weight and 
panicle length. These �indings con�irm that a larger sink size and 
better resource distribution directly improve grain weight and 
quality (Table 3) [13].
The number of �illed grains per panicle and the number of tillers 
per plant were negatively correlated at both the genotypic and 
phenotypic levels. This indicates a trade-off between panicle 
fertility and tiller production. Similar observations were 
reported in [52, 29], where excessive tillering was found to 
reduce grain set and sink ef�iciency.
Grain yield showed moderately positive correlations with both 
days to 50% �lowering and test weight. This indicates that 
genotypes with superior grain �illing capacity and slightly 
longer growth duration achieved higher yields under the 
experimental conditions (Table 3). Comparable results have 
been reported in other evaluations of rice germplasm [46, 13].

Figure	2: A heatmap displaying the correlations between yield 
and yield-related traits in rice genotypes, both genotypically 
(rg) and phenotypically (rp). Green and red represent positive 
and negative associations, with color intensity signifying the 
degree of correlation.
Also, the correlation heatmap (Figure 2) gives a graphical 
summary of how strong and what type of associations there are. 
DFF's strong positive correlation with PH and PL's with TW are 
examples of strong positive correlations (green), which are 
easily recognized, and strong negative correlations (red) like 
NT/Pl. with NFG/P also show possible trade-offs. The stronger 
genotypic correlations emphasize the predominance of additive 
gene action in these associations, which is advantageous in rice 
breeding because it allows more reliable selection of yield and 
yield-related traits.

c.	PATH	ANALYSIS
The path coef�icient analysis revealed different traits' direct and 
indirect effects on grain yield at the phenotypic and genotypic 
levels Table 4.
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Table	4.	Phenotypic	(P)	and	Genotypic	(G)	Path	Coef�icients	of	Grain	Yield	and	Yield-Related	Traits	in	Rice	Genotypes

Residual	effect:	Genotypic = 0.6085 & Phenotypic = 0.6919
Note: DFF = Days to 50% Flowering; PH = Plant Height; NT/Pl. = 
Number of Tillers per Plant; NP/m² = Number of Panicles per 
m²; PL = Panicle Length; NFG/P = Number of Filled Grains per 
Panicle; TW = Test Weight; GY = Grain Yield. Bold values are 
direct effects; other values are indirect effects. 
At the phenotypic level, days to 50% �lowering had a strong 
positive direct effect (0.4399*), emphasizing its importance in 
determining yield. This result is consistent with [7], who 
reported the signi�icant impact of �lowering time on wheat grain 
yield. Plant height had a negative direct effect (–0.3829*), but its 
indirect positive effects through other traits reduced the overall 
negative impact. This suggests that although taller plants may 
not always be advantageous, their association with yield-related 
traits can mitigate the direct negative contribution.
Number of tillers per plant had a moderate positive direct effect 
(0.1122), while number of panicles per square metre 
contributed only marginally (0.0050), indicating limited 
contributions to yield under the present conditions. Test weight 
and number of �illed grains per panicle showed negative direct 
effects (–0.2121 and –0.0725), but their indirect effects partly 
compensated, showing that their in�luence operates through 
other traits. Panicle length exerted a strong positive direct effect 
(0.216 at phenotypic level; 0.3304 at genotypic level*), 
establishing its importance as a yield-related trait.
At the genotypic level, direct effects were generally stronger, 
indicating greater stability and less environmental interference. 
For example, days to 50% �lowering had a strong positive direct 
effect (0.5344), while plant height contributed negatively 
(–0.4811). Indirect contributions were also higher at this level, 
particularly for test weight (0.2893) and plant height (0.3573), 
showing that these traits acted as important mediators. Notably, 
the residual effects were lower at the genotypic level (0.6085) 
than the phenotypic level (0.6919), con�irming that genotypic 
path analysis explained a greater proportion of yield variation.

Figure	3. Path diagram showing direct and indirect effects of 
yield-related traits on grain yield in rice. The thickness and 
direction of arrows represent the magnitude and sign of effects.
The path coef�icient matrix (Table 4) and the path diagram 
(Figure 3) illustrate these relationships, with arrows 
representing the magnitude and direction of effects. Overall, 
days to 50% �lowering and panicle length emerged as the most 
reliable direct contributors to grain yield. In contrast, plant 
height, test weight, and number of tillers per plant contributed 
mainly through indirect pathways. These results are consistent 
with previous research identifying �lowering duration and 
panicle traits as reliable selection criteria for improving yield [9, 
7]. The stronger direct and indirect effects at the genotypic level 
con�irm that these traits are under strong genetic control and 
can be effectively targeted in breeding programs.

d.	PRINCIPAL	COMPONENT	ANALYSIS	
Principal component analysis (PCA) was performed to evaluate 
the contribution of yield and yield-related traits to overall 
genetic variability among genotypes. The �irst three principal 
components (PCs) explained 61.51% of the total variation 
(Table 6). PC1 accounted for 22.58% of the variance, PC2 for 
20.40%, and PC3 for 18.53%. Each additional component 
explained less than 14% of the variation, showing that the �irst 
three PCs suf�iciently captured the main differences among 
traits. Similar trends in rice were reported in [19, 35].

Table	5.	Trait	contributions	(%)	to	the	�irst	three	principal	components	in	rice	genotypes
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Table	6.	Eigenvalues,	variance	explained,	and	cumulative	variance	explained	by	principal	components

The number of tillers per plant (31.10%) and the number of �illed grains per panicle (31.91%) contributed the most to PC1, followed 
by the number of panicles per m² (13.38%) and test weight (8.55%) (Table 5). This shows that tillering ability and grain number were 
the primary sources of variability among genotypes in PC1. Similar importance of these traits was reported in [24, 22]. Plant height 
(28.09%) and days to 50% �lowering (45.38%) contributed the most to PC2, along with the number of panicles per m² (13.10%), 
showing that maturity and plant stature essentially explained variation along this axis. Comparable �indings were reported in [53].
PC3 was mainly explained by test weight (43.95%) and panicle length (46.07%), while the number of tillers per plant contributed 
less (5.32%). This axis re�lected variation associated with panicle structure and grain size. Comparable results were reported in [33]. 
In breeding terms, these results show that PC1 was dominated by fertility and tillering traits, PC2 by maturity duration and plant 
height, and PC3 by panicle and grain traits. Selecting parents from contrasting PCs increases the probability of generating superior 
recombinants, as also suggested in [38, 15]. The PCA biplot (Figure 4) further illustrates these associations, where vectors indicate 
trait contributions and genotype positions re�lect variability patterns across PC1 & Pc2.

Figure	4.	Illustrates the PCA biplot of the rice genotypes and the 
yield correlates. The �irst two principal components of the PCA, 
PC1 and PC2, respectively accounting for 22.58% and 20.40% of 
the variance, cumulatively account for 43% of the total variance.
Figure 4 reveals that days to 50% �lowering and plant height had 
a strong association as they clustered along PC2. The grain yield 
was strongly associated with the number of panicles per square 
metre and the number of tillers per plant, as they were clustered 
together in the positive axis of PC1. However, test weight and 
panicle length exhibited movement in opposite directions, 
indicating a trade-off between panicle architecture and the 
weight of the grain.

e.	CLUSTERING
Hierarchical cluster analysis grouped the genotypes into three 
clusters based on yield and yield-related traits (Table 7 and 
Figure 5).

Figure	5. Dendrograms show the hierarchical clustering of rice genotypes based on yield and yield-related traits, which are grouped 
into three major clusters, indicating genetic diversity and trait-based similarities.
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Table	7.	Cluster-wise	mean	(±SD)	values	of	yield	and	yield-related	traits	in	rice	genotypes	

Cluster I contained six genotypes, including KNM-1638 and JGL-
3844. This group was distinguished by early �lowering, 
moderate plant height, and superior tillering ability. It also 
recorded the highest test weight and grain yield among clusters, 
suggesting that a combination of tillering capacity and heavier 
grains primarily drove yield in this group.
Cluster II included nine genotypes, such as RDR-6107 and RDR-
6130. This cluster was characterized by intermediate plant 
height, moderate �lowering, and the longest panicles among the 
groups. Although panicle length and grain number per panicle 
were relatively high, the average grain yield was lower. This 
demonstrates that panicle elongation alone cannot enhance 
productivity without complementary yield attributes.
Cluster III was the largest, with 14 genotypes including RDR-
6108 and RDR-6127. This cluster consisted of taller, later-
�lowering genotypes that produced the highest number of 
panicles per unit area and more �illed grains per panicle. 
Although its average yield was slightly lower than Cluster I, 
productivity in this group was clearly supported by panicle 
density and grain number rather than by grain size.

Finally, Cluster I relied on tillering ability and grain weight, 
Cluster II emphasized panicle length with limited yield 
ef�iciency, and Cluster III achieved yield through panicle density 
and grain number. The distinct trait combinations highlight 
valuable  diversity,  with Clusters  I  and II I  offering 
complementary parents for exploiting heterosis and achieving 
transgressive segregants in breeding programs.
Boxplots were created for each yield and yield-related trait to 
further show the cluster variations (Figure 6). The three groups' 
characteristics were clearly distinguished from one another. 
Despite having moderate plant height, Cluster I produced more 
because of its superior grain weight and tillering. The highest 
grain yield resulted from Cluster II's combination of the longest 
panicles, the most tillers per plant, and higher test weight. 
However, there were fewer grains per panicle, which limited this 
group. Cluster III achieved yield using a different approach that 
depended on the highest panicle density and number of grains 
per panicle; however, this was counterbalanced by shorter 
panicles and lower test weight.

Figure	6.	Boxplots showing comparative variation in yield and yield-related traits among three genotype clusters derived from 
hierarchical cluster analysis. Traits include: (a) DFF, days to 50% �lowering; (b) PH, plant height (cm); (c) NT/Pl., number of tillers per 

2plant; (d) NP/m , number of panicles per m²; (e) PL, panicle length (cm); (f) NFG/P, number of �illed grains per panicle; (g) TW, test 
weight (g); and (h) GY, grain yield (kg ha⁻¹).
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BREEDING	IMPLICATIONS
The present study highlights the breeding value of key yield 
components such as test weight, number of �illed grains per 
panicle, and panicle length, which contributed positively to 
grain yield and should form the basis of a trait-speci�ic selection 
index. Correlation and path analyses con�irmed that panicle 
number, grain number, and grain weight strongly affected yield, 
while PCA emphasized their collective contribution to overall 
variability. Cluster analysis further supported donor 
identi�ication, with Cluster I genotypes excelling in grain weight, 
Cluster II in tillering and panicle length, and Cluster III in panicle 
density and grain number. These complementary trait 
combinations represent reservoirs of advantageous alleles that 
can be strategically deployed in ICAR and AICRIP breeding 
pipelines, while high-yielding outliers detected through boxplot 
analysis may serve as immediate donors in pre-breeding 
programs.
From a breeding strategy perspective, the most promising 
avenue lies in crossing divergent parents from Clusters II and III, 
which is expected to generate heterotic hybrids and 
transgressive segregants by integrating heavier grains with 
superior panicle density and grain number. Beyond 
conventional hybridization, these donors also provide scope for 
QTL pyramiding through marker-assisted selection, 
particularly for grain yield, test weight, panicle length, and �illed 
grains per panicle that exhibited strong additive control. 
Coupled with modern tools such as genomic selection and high-
throughput phenotyping, these approaches will accelerate the 
stacking of favorable alleles, enabling the development of 
climate-resilient, high-yielding, and widely adaptable rice 
cultivars.

CONCLUSION
This study demonstrated substantial genetic variability among 
rice genotypes for yield and its component traits, with test 
weight, panicle length, number of �illed grains per panicle, and 
grain yield emerging as reliable targets for direct selection. 
Multivariate analyses consistently identi�ied panicle number, 
grain weight, and grain number as the most in�luential drivers of 
yield variation. At the same time, clustering con�irmed the 
presence of complementary donor pools offering contrasting 
trait combinations.
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