

09 June 2025: Received 28 July 2025: Revised 06 August 2025: Accepted 04 September 2025: Available Online

https://aatcc.peerjournals.net/

Review Article Open Access

Ralstonia solanacearum: an overview on distribution, variability, biomanagement and host plant resistance approaches

 1 Department of Plant Pathology, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, 176062, India 2 Department of Entomology, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, 176062, India

ABSTRACT

Ralstonia solanacearum, a highly destructive soil-borne bacterium, is responsible for bacterial wilt disease in over 200 plant species belonging to over 50 different botanical families, including important solanaceous crops viz., potato, tomato and eggplant. This is theworld's second most damaging bacterial plant pathogen threatening global food security due to its rapid spread, genetic adaptability and ability to persist in diverse environments. R. solanacearum (phylotype II) originated in Central and South America and has spread globally through contaminated agricultural materials. Infected potato facilitated its establishment in Africa, Asia, Europe and Oceania, while international trade of ornamental plants like Pelargonium introduced the pathogen into greenhouse systems in Europe and the United States of America. Its adaptability to varied climatic conditions has enabled the colonization in wide regions including tropical, subtropical and temperate, posing a persistent threat to crop production. The pathogen exhibits extensive genetic diversity and is classified into three species within the Ralstonia solanacearum species complex (RSSC) i.e. R. solanacearum, R. pseudosolanacearum and R. syzygii. Horizontal gene transfer drives the development of diverse strains, resulting in rapid evolution and enabling the acquisition of virulence traits. These further help in the adaptation of bacterium to new hosts and environments. This variability generated across genetic, environmental, ecological and pathogenic aspects, complicates disease management and necessitates region-specific management approaches. The conventional management approaches for bacterial wilt disease remains challenging due to pathogen's genetic heterogeneity and environmental adaptability. Hence, these limitations reduce the efficacy of traditional control measures. In line to these limitations, sustainable control of R. solanacearum relies on biocontrol agents (BCAs) and integrated approaches that harness ecological interactions to suppress pathogen populations. Bacteria make up the majority of BCAs at 90%, with fungi accounting for the remaining 10%. Key bacterial BCAs exploited for the control of R. solanacearum include Pseudomonas, Bacillus and Streptomyces which suppress soil pathogen populations and enhance plant immunity. Additionally, lytic bacteriophages have shown significant efficacy in controlling R. solanacearum. Various studies concluded that cultivation of resistant varieties, application of biocontrol measures and microbiome engineering can offer longterm sustainable management of R. solanacearum across diverse cropping systems. This review synthesizes worldwide distribution, variability of Ralstonia solanacearum along with current research in host resistance and biological management, offering insights that contribute to sustainable plant disease management.

Keywords: Ralstonia solanacearum, bacterial wilt, soil-borne pathogen, geographical distribution, variability, races, biovars, phylotypes, sequevars, bio-management, BCAs, organic apporoaches and host plant resistance.

1. Introduction

Ralstonia solanacearum (formerly called Pseudomonas solanacearum) [1], is a soil-borne, motile (polar flagellum), rod shaped (0.5-1.5 μm), β-proteobacteria causing enormous crop losses worldwide [2,3]. It is the second most damaging plant pathogen [4], causing bacterial wilt in wide range of plants. This pathogen is widely studied due to its worldwide distribution, extensive host range, destructive nature and lack of effective management practices. The Ralstonia solanacearum species complex (RSSC) [5], causing bacterial wilt is considered one of the most obliterative plant pathogenic bacteria. Thomas Jonathan Burrill was a pioneer in describing bacterial wilt disease on potatoes in 1890.

*Corresponding Author: Shikha Sharma

DOI: https://doi.org/10.21276/AATCCReview.2025.13.04.270 © 2025 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Erwin Frink Smith also described bacterial wilt disease in brinjal, potato and tomato in 1896 and later in tobacco in 1908 [6,7]. E.F. Smith further classified the causal organism of this disease under the genus Bacillus as Bacillus solanacearum [6]. With advancements in technology, the nomenclature and taxonomy of the bacterial wilt pathogen have evolved. Initially placed in the genus Bacillus, it was subsequently transferred to the genus Bacterium [8], and later transferred to Pseudomonas based on Migula's description in 1914 [9,10]. It was then classified under Phytomonas [11], followed by Xanthomonas [12], and was subsequently reassigned to Pseudomonas [11, 13, 14, 15, 16]. Later on, it was transferred to genus Burkholderia [17, 18, 19], on the basis of DNA-DNA homology and phylogenetic studies. Finally, in 1995 it was placed in its current genus Ralstonia [1]; it was named in honour of bacteriologist Erica Ralston.

R. solanacearum is mostly found in tropical, sub-tropical conditions and has even adapted to temperate regions worldwide.

Strains of *R. solanacearum* adapted to temperate conditions were found in Western Europe, infecting potato tubers [20]. This plant pathogenic bacterium is known to affect more than 200 plant species belonging to over 50 different botanical families [21,22], including some high value crops like pepper, potato, tobacco, tomato etc. The disease caused by *R. solanacearum* is commonly referred to as bacterial wilt. However, other diseases like brown rot of potato, Moko disease in banana, Granville wilt of tobacco and southern wilt in geranium are also caused by *R. solanacearum*.

Ralstonia can thrive in wet soil or water for years [23,24], in the absence of a host plant and when this pathogen comes in contact with a susceptible host plant, it enters the plant system through root wounds or at the site of secondary root emergence. The bacterium thereafter colonizes the root cortex, invades the xylem vessels and ultimately spreads rapidly to aerial plant parts through the vascular system [22]. The bacterium secretes exopolysaccharide (EPS) which blocks xylem, the water conducting tissue, leading to the characteristic symptom of wilting in plants [25,26,27]. There are various virulence factors triggered by Ralstonia for disease development viz., EPS, T₃ secretion system and cell wall degrading enzymes [28, 29, 30]. The wilt is often restricted to one side of the plant. The field diagnosis of this disease is the ooze test (milky white ooze from fresh cut stems, rhizomes or tubers), representing high cell density in infected tissues [22].

Figure 1. Pathogenesis of R. solanacearum

The signs, symptoms and development of bacterial wilt disease can vary, depending on the susceptibility of host plant and aggressiveness of pathogenic strain. However, general characteristic symptoms of the disease include wilting, stunting and yellowing of young plants [16, 31, 32]. Some of the other symptoms associated with this pathogen are leaf epinasty (leaves bending downwards), adventitious roots arising in stem, dark narrow stripes corresponding to the infected vascular bundles [16, 31].

Across the globe, this pathogen can lead to crop losses from 20-100% and 75-81% in India depending on crop growth stages and environmental conditions [33, 34, 35]. In potato, *R. solanacearum* is the second most important disease, resulting in 45 to 80% losses, after late blight disease. It is also reported that the bacterial wilt pathogen affects 1.6 million hectares (MH) of potato in around seventy-eight (78) countries causing an annual loss of \$848 million [36]. The pathogen is reported to affect tomato crops in Uganda, leading to yield losses of up to 88%,

while in Ethiopia, it has resulted in 100% disease incidence in pepper crop [34]. On average, yield losses caused by *Ralstonia solanacearum* range from 33-90% in potatoes, 0-91% in tomatoes, 10-30% in tobacco, 20% in groundnuts and up to 80–100% in bananas [38].

Given its significant economic impact, widespread distribution, considerable diversity coupled with the challenges in effective management, studying this pathogen is essential. Hence, this review will shed light on different aspects of *Ralstonia solanacearum* corresponding to distribution, variability and bio management.

2. Distribution

Ralstonia solanacearum (RSSC phylotype II) has originated from Central and South America, where its immense genetic diversity is found [38,39,40]. This bacterial pathogen, responsible for bacterial wilt (BW) disease, is globally distributed [37], with a huge host range and wide genetic diversity. Some strains of Ralstonia have spread across the globe through the commerce of infected, asymptomatic, vegetatively propagated crops like potato tubers, banana/plantain sucker [39,40].

This pathogen is a pervasive soil inhabitant, spanning the globe, including various islands within tropical latitudes [32]. These regions receive an average annual rainfall exceeding 100 cm, have a mean summer temperature surpassing 21°C, winter temperatures above 10°C, an average yearly temperature below 23°C and a favorable growing season for more than six months [22, 41]. Moraes and his colleagues (1947) primarily described the presence of bacterial strains adapted to infect the potato crop in temperate regions (≤ 24°C) [42]. These pathogenic strains were identified as race 3 biovar 2 (phylotype IIB; sequevar 1) and are called "potato race" [42]. Ralstonia solanaceraum phylotype IIB; sequevar 1 is considered a quarantine pathogen and is cataloged as a federal select agent under USDA Agricultural Bioterrorism Protection Act, 2002 [32]. The table 1 below is adapted from data provided by the European and Mediterranean Plant Protection Organization [39,40], highlighting the world distribution of Ralstonia solanacearum species complex (RALSSO). Initially, the rainforests of Costa Rica and the Caribbean were considered the site of emergence for strains causing Moko disease. However, due to the widespread nature of the pathogen, it is now found in multiple Latin American countries. Sequevar PIIB-3 has been identified as a causal agent of bugtok and Moko diseases, affecting dessert bananas (AAA group) and plantain (saba and cardaba, ABB group) in the Philippines [43]. Similarly, PIIB-4 has been reported to cause Moko disease in dessert bananas in Malaysia [44]. Geographically originating in South America and being widespread in that region, the sequevar PIIB-1 has spread across the potato growing areas of Africa, Asia, Europe and Oceania. Moreover, this strain has spread through global trade of infected Pelargonium cuttings and has become established in protected horticultural systems in Europe and the USA, as reviewed in table 2 [45, 46].

 $Table\,1.\,Global\,distribution\,of\,Ralstonia\,solanace arum\,across\,different\,crops$

Continent	Pathogen status	Major crops affected across the continents	
Africa	Present	Tomato, eggplant, potato, huckleberry, pelargonium, Solanum nigrum, Physalis angulata, chilli pepper	
America	Present	omato, potato, banana, plantain, eucalyptus, bell pepper, eggplant, heliconia, cucumber, pelargonium, <i>Plectranthus amboinicus</i> , tobacco, coffe weed, <i>Solanum americanum</i> , dollar weed, Pennsylvania smart weed, hydrangea, blueberries	
Asia	Present	Potato, eggplant, horsetail beefwood, sweet potato, hibiscus, balsam pear, ramie, eggplant, eucalyptus, mulberry, olive tree, sweet pepper, peanut, nightshade plant, sesame, tobacco, tomato, ginger, chilli, bird of paradise, dawana, coleus, banana, <i>Rosa</i> spp., groundnut, bitter gourd, anthurium, turmeric, <i>Croton hirtus, Hyptis suaveolens</i> , siam tulip, marigold	
Europe	Present	Potato, rose, tomato, pepper, aubergine, Rosa spp., Curcuma longa, anthurium, ginger, Pelargonium x hortorum, Solanum dulcamara	
Oceania (Australia)	Present	Heliconia, potato, tomato, ginger, eggplant, tobacco, peanut, chilli, sweet pepper, Casuarina equisetifoliai	

Table 2. Summary of Ralstonia solanacearum races: distribution, host range and biovar

Race	Geographical distribution	Host range	Biovar
1	Asia, Africa, Australia, North America and South America	Wide	1,3,4
2	Caribbean, Asia, Central America, South America and Hawaii	Banana & other <i>Musa</i> spp.	1
3	Worldwide (except Canada and United States)	Geranium, potato and some other solanaceous crops	2
4	Australia, Asia and Hawaii	Ginger	3,4
5	China	Mulberry	5

The geographical area of India is divided into 15 agro-climatic zones recognized by the Indian Council of agricultural research (ICAR) and planning commission of India, which are further divided into 72 homogenous sub-zones. Table 3 below drafts the distribution of the bacterial wilt pathogen across the agro-climatic zones of India.

Table 3. Distribution of R. solanacearum in India (data adapted from EPPO 2025)

Agro-climatic zones	Pathogen status	Major crops affected	References	
Western Himalayan Region	Present	Tomato, brinjal, potato, bird of paradise, ginger, chilli, capsicum, davana, coleus, groundnut, fennel, cumin, ajwain, cotton, jute and broad bean	[50], [51], [52], [53], [54]	
Eastern Himalayan Region	Present	Potato, sweet pepper, chilli, tomato, brinjal and wild Datura metel	[50], [52], [54], [55]	
Lower Gangetic Plains Region	Present	Potato, tomato, brinjal, marigold, chilli, tobacco, elephant footyam, bottle gourd, water melon, banana, jute, ginger, large cardamom, <i>Cestrum</i> nocternum, Bougainvillea sp., (weed hosts- Martynia annua, Cleome viscosa, Physalis minima, Cestrum diurnum, Amaranthus spinosus, Costus speciosus, Croton sparsiflorus, wild Datura metel, Solanum indicum and Solanum sisymbriifolium)	[50], [52], [53], [56], [57]	
Middle Gangetic Plains Region	Present	Potato, tomato, brinjal, chillies and wild Datura metel	[50], [52], [53]	
Upper Gangetic Plains Region	Present	Potato, tomato, brinjal, chillies and wild Datura metel	[50], [52]	
Trans-Gangetic Plains Region	Not endemic	-	[50]	
Eastern Plateau and Hills Region	Present	Tomato, brinjal, potato, bird of paradise, ginger, chilli, capsicum, davana and coleus; <i>Heliconia</i> spp.	[51], [53], [58]	
Central Plateau and Hills Region	Present	Eggplant, potato tomato, chilli, brinjal and wild <i>Datura metel</i>	[50], [52], [53], [59]	
Western Plateau and Hills Region	Present	Tomato, brinjal, potato, bird of paradise, ginger, chilli, capsicum, davana and coleus; <i>Heliconia</i> spp.	[51], [52], [53], [58], [59]	
Southern Plateau and Hills Region	Present	Tomato, brinjal, potato, bird of paradise, banana, ginger, chilli, capsicum, davana and coleus	[51], [53], [54], [58], [60], [61], [62], [63], [64]	
East Coast Plains and Hills Region	Present	Banana, tomato, brinjal, potato, bird of paradise, ginger, chilli, capsicum, davana and coleus	[51], [60], [61], [63], [64]	
West Coast Plains and Ghat Region	Present	Tomato, brinjal, potato, bird of paradise, ginger, chilli, capsicum, davana and coleus; <i>Heliconia</i> spp.	[51], [53], [54], [58], [62]	
Gujarat Plains and Hills Region	Present	Potato	[52]	
Western Dry Region	Not endemic	-	[50]	
The Islands Region	Present	Eggplant, tomato, chilli	[53], [65]	

In 1978, Shekhawat and his co-workers conducted a study on distribution, races and biotypes of the bacterial wilt pathogen in India. They found the prevalence of race 3 and biotype II in hilly regions. Meanwhile, in the eastern plains and Deccan and central plateau race 1 and biotype III were preeminent [66]. In Chhattisgarh, bacterial wilt is endemic in major brinjal growing areas, causing significant yield losses of 40-80%. The isolates responsible for the disease belonged to race 1 and biovar III, with race 1 (53.84%) being predominant, followed by race 3 (38.46%) and race 2 (7.69%) [67]. Sagar and his colleagues were the first to report the presence of the phylotype IV sequevar 8 (bv2T) strain of Ralstonia solanacearum, in the midhill regions of Meghalaya, India, responsible for potato bacterial wilt. R. solanacearum isolates of potato collected from Himachal Pradesh, Uttar Pradesh and Madhya Pradesh were identified as phylotype IIB-1 (biovar 2 race 3) [52]. Isolates of R. solanacearum collected from Andhra Pradesh, Karnataka, Kerala, Maharashtra, Orissa and Tamil Nadu were characterized as race 1 biovar 3 (and 3B) [51]. Intraspecific identification of R. solanacearum strains isolated from solanaceous vegetables in Andaman Islands, India revealed the presence of race 1 biovar 3 and race 1 biovar 4. Both biovars exhibited analogous virulent approach in wilting plants. All isolated strains were classified as phylotype I and multilocus sequence typing implied that they belong to a small number of clonal complexes, that encompass strains from mainland India, particularly West Bengal and Kerala [65].

In Himachal Pradesh (H.P.), India *R. pseudosolanacearum* (Phylotype I) was identified as the causal agent of bacterial wilt of tomato. Sequevars I-44, I-46, I-47, I-57, I-70 and I-71 were reported for the first time in H.P., India by partial *egl* gene sequencing [68]. The rampant distribution of *R. solanacearum* across diverse geographical zones of India has led to considerable genetic, phenotypic and pathogenic variability within the pathogen population. This variability is evident in the diverse races, biovars and sequevars identified across different regions.

Variability

The heterogeneous nature of RSSC is because of natural transformation [69], and recombination [70], thus, evolving and adapting over time. Classically, the RSSC pathogens are divided into five races based on their host range [71], and six biovars on the basis of biochemical properties [72]. A new classification system based on phylogenetic analysis was proposed by Fegan and Prior in 2005 characterized RSSC strains into four phylotypes as per their geographic origin [38]. The phylotypes are further differentiated into sequevars on the basis of nucleotide variation in partial sequencing of *egl* gene (endoglucanase). Lately, the RSSC is divided into three species, *R. pseudosolanacearum*, *R. solanacearum*, *R. syzygii* [73]. These strains are characterized into four phylotypes:

phylotype I - originating from Asia includes $\it R.$ $\it pseudosolanacearum,$

 $phylotype\ II-from\ America\ includes\ \textit{R. solanace} arum,$

phylotype III - originating from Africa and the Indian Ocean includes *R. pseudosolanacearum* and

phylotype IV from Australia, Japan and Indonesia classified as *R. syzygii* [38,73,74].

Polymorphism created by mutations gets redistributed among bacterial strains by recombination and horizontal gene transfer (HGT) [75]. Conjugation, transduction and transformation are three mechanisms of HGT. In conjugation, DNA is directly transferred from a donor bacterial cell to recipient cell while in transduction the transfer of DNA is facilitated by bacteriophages. However, Transformation involves the uptake of DNA by a competent bacterial cell from its surroundings [76]. Furthermore, HGT is considered as the main mechanism of bacterial genome evolution [77]. In Ralstonia solanacearum, evolutionary ecology by recombination has been studied by Wicker and his colleagues [70]. This study analyzed prototypical strains of R. solanacearum by multi-locus sequence analysis (MLSA) with 9 loci and concluded that recombination played a major role in the genome evolution of *R. solanacearum*. Genomic analysis of nine strains of R. solanacearum unveiled multitudinous genomic islands, mostly surrounded by mobile elements, such as bacteriophages or insertion sequences (ISs), implying horizontal gene transfer (HGT) [78, 79, 80]. Moreover, laboratory experiments have demonstrated that horizontal gene transfer (HGT) occurs among strains from the four phylotypes of R. solanacearum, with an 80% probability of being naturally transferred by plasmid or genomic DNA [69, 76]. The role of HGT has also been demonstrated in enhancing the virulence of *R. solanacearum* on the tomato crop [81].

The ability of *R. solanaceraum* to naturally develop the physiological state of competence needed to exchange the genetic material by transformation under *in vitro* and *in planta* conditions, demonstrated the underlying role of HGT in its genomic evolution [82, 83]. The premise of HGT *in planta* has been reinforced by the observation of mixed infections of *R. solanacearum* strains from two phylotypes in tomato crop [76]. Alternative Codon Usage Regions (ACURs) are the non-coding sequences with known proteins which were present in

sequences with known proteins which were present in GMI1000 strain of *Ralstonia* [84]. These sequences were observed in 93 distinctive sequence regions with major variations in base compositions [85].

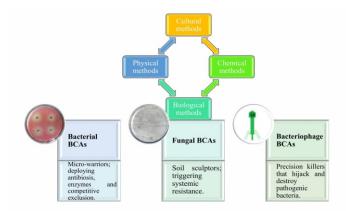
Prior accounts of genetic variability amongst American *R. solanacearum* strains [86, 87, 88] implied that high level of pathogenic diversity subsist in countries like French Guyana, Colombia and Brazil [89].

Recombination and HGT plays imperative role in governing the evolution of plant pathogenic bacteria. Meanwhile, phylotype and sequevar categorization of *R. solanacearum* are used to conclude the amount and distribution of phenetic and phylogenetic variability of pathogen [80].

In 2022, Ghorai and his co-workers, studied the genetic diversity of *R. solanacearum* under different agro-climatic regions of India. They were the first to report the occurrence of sequevar I-48 in bottle gourd inciting bacterial wilt disease in India. Their findings revealed that genetic variation across agro-climatic zones was relatively low (18.9%), whereas variation within individual zones was significantly higher (81.1%), suggesting extensive gene flow between populations across different zones [90]. Furthermore, the most varied gene attributing to the evolution of RSSC globally, was observed to be *egl* (endoglucanase).

 $Table\,4.\,Distribution\,of\,R.\,solanace arum\,s equevars\,in\,India$

State	Sequevar	Reference
Goa	I-17, I-14, I-48	
Karnataka	I-17, I-47	
Kerala	I-17, I-47	
Andaman & Nicobar Islands	I-14, I-47, I-48	
Maharashtra	I-48	
West Bengal	I-47, I-48, IIB-1	
Himachal Pradesh	I-45, I-30	
Uttar Pradesh	IIB-1	[53], [90]
Madhya Pradesh	IIB-1	
Meghalaya	IIB-1	


Variability in bacteria can also play a key role in their pathogenic ability. As two novel type III effectors were believed to be acquired through HGT in HA4-1 strain of *R. solanacearum*, associated with host specificity and pathogen evolution [91]. Reports have shown that the transfer of DNA polymerase gene *i.e. imuABC* from *Cupriavidus taiwanensis* could enhance the acclimatization of *R. solanacearum* to new hosts [92].

Summative adjacent is that variability plays a significant role in evolution, pathogenicity and adaptation of the RSSC.

Integrated disease management (IDM) for plant pathogenic

Bio-management

bacteria includes the use of chemicals, physical practices, biological approaches, host resistance and cultural practices like crop rotation, sanitation. However, the global effort to breed resistant plant lines has faced setbacks due to the highly variable nature of this bacterial pathogen (figure 2). Moreover, the ability of bacteria to develop resistance, survival for long durations in the environment and wide host range restricts the efficiency of IDM measures [93]. Antibiotics such as streptomycin, ampicillin, tetracycline and penicillin showed meager effect on R. solanacearum while the application of streptomycin escalated the occurrence of bacterial wilt in Egypt [94]. Thus, the management of R. solanacearum poses a significant challenge. Regardless of other respective IDM measures, effective management tactics with eco-friendly effects aim to decrease or eliminate disease incidence and severity by incorporating biological control agents, organic amendments and resistant crop varieties with desirable level of effectiveness, while minimizing chemical inputs to preserve environmental health. Employing bio management tactics involves the use of living microorganisms or plant or animal-based products for plant disease management. The advantages of bio-control measures include their ability to multiply and spread after initial implementation [95]. BCAs combat diseases by competing for food and space, exhibiting parasitism, producing antimicrobial substances (antibiosis) and triggering systemic resistance in plants [96]. The ultimate aim of biological approaches is to reduce the use of chemicals while managing plant diseases. Bacterial bio-agents constitute the majority of BCAs [97], with key studies demonstrating the effectiveness of Pseudomonas spp., Bacillus spp. and Streptomyces spp. in combating the bacterial wilt pathogen [95, 98, 99]. Additionally, fungi and bacteriophages are also extensively examined and employed against R. solanacearum. Biocontrol effectiveness is influenced by inoculation techniques for biocontrol agents, such as soil drenching, root dipping and seed coatings [95]. Hence, here we discussed and analyzed information related to bio management of R. solanaceraum for its effective management.

 $Figure\,2.\,Management\,tactics\,employed\,against\,Ralstonia\,solanace arum$

1. Bacteria- as Biocontrol agents (BCAs)

Bacteria make up the majority of BCAs at 90%, with fungi accounting for the remaining 10% [34]. Bacterial BCAs helps in managing bacterial wilt disease by producing anti-microbial compounds, improving soil health and by competing for space and nutrients. Overall, BCAs enhances plant immunity by stimulating defense responses [96, 100]. Xue and his colleagues were first to report Acinetobacter sp. strain as a BCA against Ralstonia wilt of tomato [101]. Burkholderia pyrrocinia, B. nodosa, B. tericola, B. sacchari, Chryseobacterium daecheongense [102], are some of the peculiar bacterial BCA which are reported for managing bacterial wilt disease. A substantial reduction in bacterial wilt disease of chilli (86%) was also achieved by the application of endophytic bacteria Bacillus subtilis [103]. Paenibacillus polymyxa, a BCA is known to suppress bacterial wilt disease up to 80% in potato field. Meanwhile, Enterobacter cloacae, an endophytic bacterial isolate from potato crop, showed 26.5% of disease suppression. Numerous studies have reported that endophytic and rhizobacteria effective against bacterial wilt disease as BCAs are Bacillus, Serratia spp., Paenibacillus and Pseudomonas [34]. Pseudomonas aeruginosa and *P. syringae* also showed effectiveness in managing bacterial wilt disease via host resistance and antibiosis. Agarwal and his colleagues isolated forty endophytic bacterial isolates from Gnetum gnemon plant and tested their efficacy against bacterial wilt disease in the tomato crop [105]. Among 40 bacterial isolates, two endophytic bacterial species viz., Bacillus velezensis and Staphylococcus warneri demonstrated antibiosis activity against R. solanacearum. Bacillus licheniformis was found to be amply effective against this disease (67%) through soil drenching and seed priming application methods. In planta evaluation of this BCA during artificial pathogenic inoculation showed 71% disease reduction. Furthermore, field evaluation involving soil solarization and application of B. licheniformis notably reduced the R. pseudosolanacearum population managing ginger bacterial wilt. This bacterium is being advertised as a potential remedy for bacterial wilt of ginger and the product is termed as "Bacillich" [106].

Mode of action of bacterial bio-agents

Bacterial bio-agents can either be endophytic or plant growth promoting rhizobacteria (PGPR) that protects the crop plants from diseases via different action mechanisms. Endophytic bacteria are those which reside inside the plant system without causing any harm and can trigger induced systemic resistance (ISR) in order to the suppress plant diseases. ISR involves the production of reactive oxygen species, phytoalexins, phenolic compounds or pathogenesis-related (PR) proteins, or the formation of physical barriers like modifications of cell walls

and cuticles [107]. Safdarpour and Khodakaramian reported Pseudomonas mossellii and P. fuorescence as potential endophytic BCAs against bacterial wilt of tomato [108]. *In vitro* investigations by Das and his co-workers identified five genera viz. Curtobacterium, Pantoea, Pseudomonas, Microbacterium and Paracoccus as promising endophytic bacterial biocontrol agents against bacterial wilt of tomato [109]. Meanwhile, PGPR are free-living bacteria in the rhizosphere of plants that promote plant growth and suppress plant diseases via antibiosis, competition for space and food, hyperparasitism, or ISR. Antibiosis refers to the mode of action involving the secretion of low molecular weight secondary metabolites that inhibit pathogen growth [110]. Hyperparasitism is competitive interaction between one living organism and a parasite. Bdellovibrio bacteriovorus is a predatory bacterium known for its competitive interaction with plant pathogenic bacteria [111]. Ralstonia pickettii and Priestia megaterium were found as promising rhizospheric bacterial isolates against Ralstonia solanacearum [109].

2. Fungi- as BCAs

Some antagonistic fungal strains are also reported as BCAs for R. solanacearum. Greenhouse studies revealed a decrease in the population of R. solanacearum on the root surface and xylem tissue by 26.7, 79.3 and 81.7% post Glomus vesiforme Berch. treatment on tomato. Treated plants had high amounts of soluble phenols and cell-wall-bound phenols in root tissues. Increase in cell-wall-bound phenol content was because of R. solanacearum and G. versiforme preferably boosted the soluble phenol content [112]. In vitro and greenhouse studies showed Trichoderma viridae as an effective bio-agent against R. pseudosolanacearum. By the production of secondary metabolites, *Trichoderma* spp. inhibited the growth of *R*. solanacearum in vitro [113]. Pythium oligandrum was also found to have biocontrol potential for suppressing bacterial wilt disease by regulating the signaling pathway for ethylene [114]. Furthermore, *Parmotrema tinctorum*, a lichen fungus [115], and three other fungi viz., Scutellospora sp., Glomus margarita and G. mosseae were also recognized as biocontrol fungi against bacterial wilt disease [49]. A reduction in R. solanacearum population on the root surface and xylem of tomato plant was observed following the inoculation of Glomus vesiforme. The colonization of Glomus vesiforme and R. solanacearum resulted in a higher concentration of root phenols, thus inducing host resistace [34].

Mode of action of fungal bio-agents

ISR, antibiosis, hyperparasitism and competition for food and space are action mechanisms for delimiting and killing the pathogens causing disease in crop plants. *Trichoderma asperellum* suppresses *Fusarium* wilt through iron competition, mediated by the production of iron-chelating siderophores [116]. *Trichoderma* spp. and *Clonostachys* (earlier, *Gliocladium*) were found to produce antimicrobial compounds like 6-PAP, gliovirin, gliotoxin and viridin [117]. *Trichoderma* and *Clonostachys* are the most studied mycoparasites, having varied and wide host range. These fungal antagonists produce attachment and infection structures, and kill their hosts by the release of cell wall degrading enzyme (CWDE) and antimicrobial secondary metabolites [118, 119, 120, 121, 122].

3. Bacteriophages-as a BCAs

Bacteriophages are the viruses that infect and kill bacteria, which are gaining attention as effective biocontrol agents in agriculture and food production. Ramírez and his co-workers isolated eight lytic bacteriophages which were evaluated against 65 strains of Ralstonia solanacearum [123]. Two of the isolated bacteriophages showed 100% protection against Moko disease when inoculated with two two-phage cocktail solution. Wafula and his colleagues isolated SN1 and WT1 phages which exhibited high lytic activity, high thermotolerance and acid tolerance [94]. Thus, showed great potential in managing bacterial wilt disease in a variety of conditions. They also concluded that bacteriophages offer great potential in managing bacterial wilt pathogen. Lytic bacteriophages isolated from banana cultivated soil were found to have efficacy in managing R. solanacearum pathogen [123]. In 2019 Alvàrez and his co-workers isolated waterborne phages, three of which belonged to Podoviridae, were found to be effective in managing R. solanacearum [124]. This was the first report on the management of R. solanacearum via single or combined application of bacteriophages through irrigation water.

Biosca and others studied genomic analysis of the phage having depolymerase activity.

The genomic analysis contributes to recognizing the abilities of the phages to damage host cells, thus, improving biological control of *R. solanacaerum* [125]. Bacteriophages isolated from ginger growing soils were tested for their host specificity and antagonistic activity against *R. pseudosolanacearum*. They found that isolated bacteriophages were effective against the pathogenic bacteria of the same geographical area from which it is isolated [126].

Mode of action of bacteriophages

Bacteriophages are bacteria infecting viruses that have lytic or lysogenic life cycle. In the lytic cycle, bacteriophage hijacks the host machinery and eventually lyses the host cell with the release of new virus particles. Lysogenic phages integrate their DNA in host bacterium genome and replicate passively until triggered to enter the lytic phase. Bacteriophages have bactericidal, target specific clinical action with the ability to clear biofilm [127]. Hasanien and his co-workers (isolated and characterized phages φ RS1 (Myoviridae family), φ RS2 (Myoviridae), and φ RS3 (Podoviridae) and observed 91.3, 95.6 and 95.6 % reversal of bacterial wilt disease symptoms [128]. Phage SN1 and WT1 also exhibited lytic activity, thus showed promising results against bacterial wilt disease amidst varying conditions [94].

Table 5. Effective BCAs against bacterial wilt disease

BCA	Mode of action	Crop	Reference
Bacterial BCAs	•	·	•
			5003
Genus - Bacillus			[99]
a.) B. thuringiensis	Acyl homoserine lactone lactonase	Tomato	
b.) B. amyloliquefaciens			
c.) B. sutilis			[129]
d.) B. cereus	Antibiosis (lactic acid and hexanoic acid)		[129]
u.j B. cereus	micibiosis (laccic acid and nexanoic acid)	Potato	[130]
	Difficidin and oxydifficidin production	Potato	[150]
e.) B. methylotrophicus	2 metani ana onyamietam production	Tomato	
e.j B. metrylotrophicus			[131]
Genus - <i>Pseudomonas</i>			1 1
a.) P. aeruginosa		Tomato	[104]
			[104]
b.) P. syringae	TV-skisk	Tomato	[104]
	Host resistance and antibiosis Host resistance and antibiosis		[104]
	Host resistance and antibiosis		
	Lipase, protease and α -amylase enzymes production	Tomato	[104]
c.) P. fluorescens	Elpase, protease and d-annylase enzymes production		[104]
d.) P. putida		-	[132]
M. wai daa ay		Cingan	
Myroides sp. Stenotrophomonas sp.	-	Ginger Ginger	[133] [133]
Chryseobacterium daecheongense		Tomato	[134]
Paenibacillus polymyxa	Lipopeptide production		[135]
Pradyrhizobium japonicum	Abscisic acid production	Eggplant Tomato	[136]
Fungal BCAs	Abscisic acid production	Tomato	[130]
Gigaspora margarita	-	Tomato	[49]
Glomus mosseae	-	Tomato	[49]
Scutellospora sp.		Tomato	[49]
Glomus versiforme		Tomato	[49]
nomus versijorme	Induces systemic resistance	Tomato	[112]
Pythium oligandrum	Ethylene-dependent signalling system	Tomato	[114]
Frichoderma harzianum	Metabolites	Tomato	[131]
Bacteriophages	<u> </u>		
Bacteriophages	Lytic activity	Banana	[123]
	Lytic activity	Dallalla	[123]
Bacteriophages	Lytic activity	Pepper, tomato, tobacco	[137]
PE226)	Dy aic activity	r epper, comaco, cobacco	[13/]
Bacteriophages	Lytic activity	Pepper, tomato, tobacco	[137]
TM227)	2) 40 4001109	r epper, tomato, tobacco	[10,]
Bacteriophages	Lytic activity	Tomato	[138]

Host Resistance

Most effective, cost-efficient and environment-friendly approach in managing bacterial wilt pathogen is highly resistant cultivars [139]. A wide range of investigations led to the development of bacterial wilt resistant germplasm. Major vegetable and field crops are being bred for resistance against bacterial wilt disease. Electrical fusion of mesophyll protoplasts between Solanum melongena and two varieties of Solanum *aethiopicum* resulted in somatic hybrid that possess resistance to R. solanacearum. CF6, a potato genotype reduced the bacterial wilt severity by 90-100% in Phureja, South America [34]. Resistant genotypes invaded by *R. solanacearum* do not exhibit any wilt symptoms. Limited pathogen movement has been reported from protoxylem to other xylem tissues, hence preventing bacterial multiplication in the stems of resistant tomato plants [34]. Introgression of NPR1 gene from *Arabidopsis* to a tomato variety showed a substantial reduction in bacterial wilt disease by inducing systemic acquired resistance (SAR) and induced systemic resistance (ISR) [140]. Studies from the Southern United States, South Korea and Japan showed grafting resistant stock to susceptible scions as an effective method of disease management [141, 142, 143]. McAvoy and his colleagues grafted scions of the susceptible BHN 602 tomato line onto the rootstocks of various resistant tomato lines [141]. They concluded that the grafted hybrids had low disease incidence and high fruit yield as compared to nongrafted plants. Identification and characterization of genetic bases responsible for specific and non-specific resistance can serve as a foundation for resistance breeding. Heaps of studies in tomato identified quantitative trait loci (QTLs) on chromosomes 1,2,3,4,5,6,7,8,10 and 11 against bacterial wilt disease [150, 151, 152]. Albeit a slew of QTLs has been identified and studied, only Solyc03g114600.4.1 on chromosome 3 [153] and Solyc12g009690 [154] and Solyc12g009770 on chromosome 12 are identified to impart resistance against tomato bacterial wilt [155]. Xiao and his colleagues observed non-synonymous mutation in the exonic region of SMEL4_05g015980.1 and a variant in the promoter region of SMEL4_05g016110.1 in brinjal [156].

 ${\it Table~6. Resistant~accessions/germplasm~for~resistance~to~bacterial~wilt~disease}$

Accession/ Germplasm	Host crop	Level of resistance	Reference
IT 201664	Tomato	Resistant (R)	[143]
IT 201662	Tomato	Resistant (R)	[143]
IT 201659	Tomato	Resistant (R)	[143]
IT 173773	Tomato	Resistant (R)	[143]
AG91-25	Eggplant	Resistance (R)	[144]
CIP 394895.7	Potato	Resistant (R)	[145]
Skyline-II	Chilli	Highly resistant (HR)	[146]
Hifly	Chilli	Highly resistant (HR)	[146]
UK Local-2	Tomato	Highly resistant (HR)	[147]
RIL-118	Tomato	Highly resistant (HR)	[148]
Indam-1004	Tomato	Highly resistant (HR)	[148]
Arka Samrat	Tomato	Highly resistant (HR)	[148]
PKM-1	Tomato	Highly resistant (HR)	[148]
PED	Tomato	Highly resistant (HR)	[148]
EC-802390	Tomato	Highly resistant (HR)	[148]
EC-816105	Tomato	Highly resistant (HR)	[148]
IT236738	Capsicum chinense	Highly resistant (HR)	[149]
IT283498	Capsicum chinense	Highly resistant (HR)	[149]

Table 7. R gene / QTL identified against bacterial wilt disease

R gene / QTL	Chromosome No.	Host crop	Reference
ERs1 (R dominant gene	9	Brinjal	[144], [157]
Solyc03g114600.4.1	3	Tomato	[153]
Solyc12g009690	12	Tomato	[154]
Solyc12g009770	12	Tomato	[155]
SMEL4_05g016110.1	5	Brinjal	[156]
SMEL4_05g015980.1	5	Brinjal	[156]
qBW-1	LG1	Peanut	[158]
qBWR-1	1	Potato	[159]
qBWR-2	3	Potato	[159]
qBWR-3	7	Potato	[159]
qBWR-4	10	Potato	[159]
qBWR-5	11	Potato	[159]
Bwr6w-5.1	5	Chilli pepper	[161]
Bwr6w-6.1	6	Chilli pepper	[161]
Bwr6w-7.1	7	Chilli pepper	[161]
Bwr6w-7.2	7	Chilli pepper	[161]
Bwr6w-8.1	8	Chilli pepper	[161]
Bwr6w-9.1	9	Chilli pepper	[161]
Bwr6w-9.2	9	Chilli pepper	[161]
Bwr6w-10.1	10	Chilli pepper	[161]

Organic approaches

Organic matter, including plant residues and animal waste, can suppress bacterial wilt by improving soil properties and enhancing microbial activity. The use of organic matter is directly proportional to crop productivity and management of R. solanacearum by enhancing soil chemical, physical and biological properties which favours plant growth [162, 163]. Plant residues contributing 80% followed by animal waste (10%) and simpler organic matter (OM) (10%) were found to have an oppressive effect on bacterial wilt disease. Numerous studies showed that organic matter could efficiently tackle bacterial wilt disease in field and greenhouse conditions. Cardoso and his colleagues used fresh parts of crotalaria and pigeon pea in greenhouse conditions and found 100% suppression in bacterial wilt disease of tomato [164]. Animal waste was also used to suppress bacterial wilt disease in various studies. Pig slurry, poultry and farmyard manure (FYM) were found to be efficient in suppressing bacterial wilt disease by increasing the count of antagonist BCAs [165]. Additionally, methyl gallate (MG), an antioxidant phenolic compound found in various plant species such as Meliaceae species showed potential bactericidal effects on *R. solanacearum* [166].

Mode of action: Organic matter degradation in soil can release natural inhibitory chemical substances which can affect the survival and viability of pathogens [162]. Incorporation of organic matter enhances soil health, aeration, water retention and nutrient cycling. Henceforth, organic amendments to soil can increase soil microbial activity, augment activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, thereby imparting resistance against the bacterial wilt pathogen [167, 168].

Table 8. Organic approaches to manage bacterial wilt disease

Organic matter used	Mechanism of action	Host crop	Reference
Compost (cattle manure, chicken manure, brassica and rice husk at a ratio of 3:1:1:1)	Increases enzymes ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase,	Potato	[168]
Tagetes patula L.	Antibacterial substances; 5-(3-buten-1-ynyl)-2, 2'-bithienyl and 5 (4-acetoxy-1-butynyl)-2, 2'-bithienyl	Invitro	[169]
Cryptomeria japonica	Sandaracopimarinol and ferruginol	Invitro	[170]
Cyphomandra betacea (Cav.) Sendtn.	Glycosidase inhibitory protein	Invitro	[171]
Lemon guava	-	Invitro	[172]
Benin pepper	-	Invitro	[172]
Olive waste compost	Combined effects (presence of antagonistic microorganisms	Invitro	[173]
Clausena lansium	Lansiumamide B	Tobacco	[174]
Lantana	-	Hot pepper	[175]
China berry	-	Hot pepper	[175]

Conclusion

Ralstonia solanacearum is a globally distributed pathogen, prevalent in tropical and subtropical regions, affecting over 200 plant species. The genetic variability of *R. solanacearum* is influenced by geographical isolation and spatial distance, leading to four phylotypes and distinct sequevars. This variability impacts the bacterium's aggressiveness and host range, making it a significant threat to diverse agricultural systems. Biological control methods, such as antagonistic microorganisms and integrated disease management approaches are crucial for managing *R. solanacearum*.

Future Scope

Given the global impact of *R. solanacearum*, international collaboration is necessary to share knowledge, develop consistent management strategies and prevent the spread of the pathogen across borders. Combining biological control, plant breeding and microbiota engineering to create robust and sustainable management strategies can help in the potential management of plant diseases. Understanding the evolutionary dynamics of *R. solanacearum* will help predict its adaptation to new environments and hosts. This knowledge can inform strategies to stay ahead of emerging strains. Meanwhile, leveraging biotechnological techniques to develop novel antimicrobial compounds or to engineer biocontrol agents with enhanced efficacy may serve as a viable approach for bacterial wilt management.

Conflict of interest

The authors declare they have no conflict of interest.

Acknowledgement

The author acknowledges the valuable contributions of colleagues and mentors at CSKHPKV, Palampur, whose feedback enriched the scientific rigor and clarity of the review.

References

- Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi, Y (1995)
 Transfer of two Burkholderia and an Alcaligenes species to Ralstonia General Nov: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov, Ralstonia solanacearum (Smith 1896) comb. Nov and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiology and Immunology. 39:897–904.
- 2. Hayward AC (1991) Biology and epidemiology of a bacterial wilt caused by Pseudomonas solanacearum. *Annual Review Phytopathology*. 29: 65–87.

- 3. Genin S, Boucher C (2002) *Ralstonia solanacearum*: secrets of a major pathogen unveiled by analysis of its genome. *Molecular plant pathology*. 3(3).
- 4. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G and Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. *Molecular Plant Pathology*. 13(6): 614-29.
- 5. Gillings MR, Fahy P (1994) Genomic fingerprinting: towards a unified view of the *Pseudomonas solanacearum* species complex. *CAB International*. 95-112.
- 6. Smith EF (1896) A bacterial disease of the tomato, eggplant and Irish potato (*Bacillus solanacearum* nov. sp.). Division of Vegetable Physiology and Pathology, Bulletin 12. U. S. Department of Agriculture.
- 7. Smith EF (1908) The Granville tobacco wilt. Bur. Plant Ind. Bul. 141 (Part II). U. S. 1 Department of Agriculture. 17.
- 8. Chester FD (1898) A preliminary arrangement of the species of the genus Bacterium. *JAMA*. XXX:1480.
- 9. Smith EF (1905) Bacteria in Relation to Plant Diseases. Carnegie Institution; Washington, DC, USA. 3.
- Paudel S, Dobhal S, Alvarez AM, Arif M (2020) Taxonomy and Phylogenetic Research on *Ralstonia solanacearum* Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens. 9(11):886.
- 11. Bergey DH (1923) Manual of Determinative Bacteriology. William and Wilkins Co.; Baltimore, MD, USA.
- 12. Dowson W (1943) On the generic names *Pseudomonas*, *Xanthomonas* and *Bacterium* for certain bacterial plant pathogens. *Transactions of the British Mycological Society*. 26:4–14.
- 13. Breed RS, Murray EGD, Hitchens AP (1948) Bergey's Manual of Determinative Bacteriology. 6th ed. Williams and Wilkins Co.; Baltimore, MD, USA.
- 14. Savulescu T (1948) Contribution a la classification des bacteriacees phytopathogenes. *Rev. Appl. Mycol.* 27:512–513.

- 15. Dowson WJ (1949) Manual of Bacterial Plant Diseases. Adam and Charles Black; London, UK.
- 16. Kelman A (1953) The bacterial wilt caused by *Pseudomonas solanacearum*. A literature review and bibliography. Technical Bulletin. North Carolina Agricultural Experiment Station. 194:38.
- 17. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of *Burkholderia* gen. nov. and transfer of seven species of the genus *Pseudomonas* homology group II to the new genus, with the type species *Burkholderia cepacia* (Palleroni and Holmes 1981) comb. nov. *Microbiology and Immunology*. 36:1251–1275.
- 18. Seal SE, Jackson LA, Young JPW, Daniels MJ (1993) Differentiation of *Pseudomonas solanacearum*, *Pseudomonas syzygii*, *Pseudomonas pickettii* and the Blood Disease Bacterium by partial 16S rRNA sequencing: Construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. *Journal of general microbiology*. 139:1587–1594.
- 19. Gillis M, Van Van T, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP (1995) Polyphasic taxonomy in the genus *Burkholderia* leading to an emended description of the genus and proposition of *Burkholderia vietnamiensis* sp. nov. for N2-Fixing isolates from rice in Vietnam. *International Journal of Systematic and Evolutionary Microbiology*. 45:274–289.
- 20. Janse JD (1996) Potato brown rot in western Europe history, present occurrence and some remarks on possible origin, epidemiology and control strategies. *EPPO Bulletin*. 26: 679–695.
- 21. Hayward AC (2000) *Ralstonia solanacearum*. In: *Encyclopedia of Microbiology* (Ed. by J. Lederberg; San Diego: *Academic Press*. 4: 32–42.
- 22. Denny TP (2006) Plant Pathogenic *Ralstonia* species. *Plant Associated Bacteria*. 573-644.
- 23. Alvarez B, Lopez MM, Biosca EG (2008) Survival strategies and pathogenicity of *Ralstonia solanacearum* phylotype II subjected to prolonged starvation in environmental water microcosms. *Microbiology*. 154:3590-98.
- 24. van Overbeek LS, Bergervoet JHW, Jacobs FHH, van Elsas JD (2004) The low-temperature-induced viable-but-nonculturable state affects the virulence of *Ralstonia solanacearum* biovar 2. *Phytopathology*. 94:463-69.
- 25. Orgambide G, Montrozier H, Servin P, Roussel J, Trigalet-Demery D, Trigalet A (1991) High heterogeneity of the exopolysaccharides of *Pseudomonas solanacearum* strain GMI 1000 and the complete structure of the major polysaccha ride. *Journal of Biological Chemistry* 266: 8312–8321

- 26. Kao CC, Barlow E, Sequeira L (1992) Extracellular polysaccharide is required for wild-type virulence of *Pseudomonas solanacearum. Journal of Bacteriology.* 174: 1068–1071.
- 27. Ingel B, Caldwell D, Duong F, Parkinson DY, McCulloh KA, Iyer-Pascuzzi AS, McElrone AJ and Lowe-Power TM (2022) Revisiting the source of wilt symptoms: X-ray microcomputed tomography provides direct evidence that *Ralstonia* biomass clogs xylem vessels. *PhytoFrontiers™*. 2(1): 41-51.
- 28. Denny TP, Baek SR (1991) Genetic evidence that extracellular polysaccharide is a virulence factor of *Pseudomonas solanacearum. Molecular Plant-Microbe Interactions.* 4: 198–206.
- 29. Van Gijsegem F, Genin S, Boucher C (1993) Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. *Trends Microbiology*. 1: 175–180.
- 30. Genin S, Denny TP (2012) Pathogenomics of the *Ralstonia* solanacearum species complex. Annual review of phytopathology. 50(1): 67-89.
- 31. Smith EF (1920). The brown rot of *Solanaceae*. *Bacterial diseases of plants*. Saunders Company: USA. pp. 177.
- 32. García RO, Kerns JP, Thiessen L (2019) *Ralstonia* solanacearum species complex: a quick diagnostic guide. *Plant Health Progress. 20*(1):7-13.
- 33. Singh R (1995) Seed transmission studies with *Pseudomonas solanacearum* in tomato and eggplant. ICAR Bact Wilt Newsl. 11:12–13.
- 34. Wang Z, Luo W, Cheng S, Zhang H, Zong J, Zhang Z (2023) *Ralstonia solanacearum* A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. *Frontiers in Plant Science*. 14:1141902.
- 35. Bamaniya BS, Sherpa TL, Ashajyothi M, Bhutia LD, Kumar R, Rana M, Bag N (2025) *Ralstonia solanacearum* isolated from diseased brinjal and tomato: a potential threat to vegetable cultivation in Sikkim, India. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences*.1-7.
- 36. Charkowski A, Sharma K, Parker ML, Secor GA, Elphinstone J (2020) Bacterial diseases of potato. The potato crop: its agricultural, nutritional and social contribution to humankind. 351-88.
- 37. Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC, editors. Bacterial Wilt Disease and the *Ralstonia solanacearum* Species Complex. *American Phytopathological Society Press*; St Paul, MN: pp. 9–28.

- 38. Fegan M, Prior P (2005) How complex is the *Ralstonia solanacearum* species complex? in Bacterial Wilt Disease and the *Ralstonia solanacearum* Species Complex, eds Allen C, Prior P, Hayward AC (St. Paul: APS Press). 449–461.
- 39. Ralstonia solanacearum species complex (RALSSO)[World distribution]| EPPO Global Database Cited on July 15, 2025. Available from: http://gd.eppo.int/taxon/RALSSL/distribution
- 40. <u>Ralstonia solanacearum (RALSSL)[World distribution]</u> <u>EPPO Global DatabaseCited on July 15, 2025. Available from: http://gd.eppo.int/taxon/RALSSL/distribution</u>
- 41. Lucas GB (1975) Diseases of Tobacco, 3rd Edd. Biological Consulting Associates, Raleigh, NC.
- 42. Moraes MA (1947) A vascular disease of potato (*Bacterium solanacearum*) EF Smith. (Uma bacteriose vascular da batateira (Bacterium solanacearum) EF Smith.). *Agronomia Lusitana*. 9:277-328.
- 43. Villa JE, Horita M, Hyakumachi M, Tsuchiya K (2021) Pathogenic and genetic variability of Ralstonia solanacearum strains from the Philippines. *Plant Pathology*. 70(3):544-554.
- 44. Zulperi D, Sijam K, Ahmad ZAM, Awang Y, Ismail SI, Asib N, Hata EM (2016) Genetic diversity of *Ralstonia solanacearum* phylotype II sequevar 4 strains associated with Moko disease of banana (*Musa* spp.) in Peninsular Malaysia. *European Journal of Plant Pathology*. 144(2): 257-270.
- 45. Janse JD, van den Beld HE, Elphinstone J, Simpkins S, Tjou-Tam-Sin NNA, van Vaerenbergh J (2004) Introduction to Europe of Ralstonia solanacearum biovar 2 race 3 in Pelargonium zonale cuttings. Journal of Plant Pathology. 86 (2): 147-155.
- 46. Kim SH, Olson TN, Schaad NW, Moorman GW (2003) *Ralstonia solanacearum* race 3, biovar 2, the causal agent of brown rot of potato, identified in geraniums in Pennsylvania, Delaware, and Connecticut. *Plant Disease*. 87(4):450.
- 47. Denny TP, Hayward AC (2001) *Ralstonia*. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Edited by NW Schaad, JB Jones, W Chun Minnesota: *APS Press*.151-174.
- 48. Daughtrey M (2003) New and Re-emerging Diseases in 2003. Department of Plant Pathology, Cornell University, Long Island Horticultural Research & Extension Center.
- 49. Tahat MM, Siiam K, Othman R (2012) The potential of endomycorrhizal fungi in controlling tomato bacterial wilt *Ralstonia solanacearum* under glasshouse conditions. *African Journal of Biotechnology*. 11: 13085–13094.
- 50. Sinha SK, Persley GJ (1986) Bacterial wilt in India. Bacterial Wilt Disease in Asia and the South Pacific. 28-29.

- 51. Chandrashekara KN, Prasannakumar MK, Deepa M, Vani A, Ahmad Khan AN (2012) Prevalence of races and biotypes of *Ralstonia solanacearum* in India. Journal of Plant Protection Research 52(1):53-58
- 52. Sagar V, Jeevalatha A, Mian S, Chakrabarti SK, Gurjar MS, Arora RK, Sharma S, Bakade RR, Singh BP (2014) Potato bacterial wilt in India caused by strains of phylotype I, II and IV of Ralstonia solanacearum. *European Journal of Plant Pathology*. 138(1): 51-65.
- 53. Ramesh R, Achari GA, Gaitonde S (2014) Genetic diversity of *Ralstonia solanacearum* infecting solanaceous vegetables from India reveals the existence of unknown or newer sequevars of Phylotype I strains. *European Journal of Plant Pathology*. 140(3): 543-562.
- 54. Singh D, Chaudhary G, Yadav DK (2018) Characterisation and diversity of Indian isolates of Ralstonia solanacearum causing bacterial wilt of *Capsicum annuum L. Archives of Phytopathology and Plant Protection1*. 51:5-6.
- 55. Gurjar MS, Sagar V, Bag TK, Singh BP, Sharma S, Jeevalatha A, Bakade RR, Singh KS (2015) Genetic diversity of *Ralstonia solanacearum* strains causing bacterial wilt of potato in the Meghalaya state of India. *Journal of Plant Pathology* 97(1):135-142.
- 56. Mondal B, Bhattacharya I, Khatua DC (2011) Crop and weed hosts of *Ralstonia solanacearum* in West Bengal. *Journal of Crop and Weed*. 7: 195-199.
- 57. Mondai B, Mandai S, Khatua DC (2021) Additional weed hosts of *Ralstonia solanacearum* recorded in West Bengal. *Indian journal of weed science*.
- 58. Reddy OR, Nikale RB (1992) Interception of bacterial wilt (*Pseudomonas solanacearum* race2) in Heliconias imported from Hawaii (USA). *Indian Journal of Plant Protection*. 20 (2): 242-243.
- Sagar V, Somani AK, Arora RK, Sharma S, Chakrabarti SK, Tiwari SK, Charturvedi R, Singh BP (2013) Status of bacterial wilt of potato in the Malwa region of Madya Pradesh in India. *Journal of Plant Pathology*. 95(2): 321-328.
- 60. Gnanamanickam,SS, Lokeswari TS, Nandini KR (1979) Bacterial wilt of banana in southern India. *Plant Disease Reporter*. 63 (6): 525-528.
- 61. Govindarajan G, Gnanamanickam SS (1980) Survival of the moko wilt pathogen, *Pseudomonas solanacearum* in the soil of Madras, Tamil Nadu. *Indian Journal of Microbiology* 20 (3): 234-235.
- 62. Avinash P, Umesha S (2014) Identification and genetic diversity of bacterial wilt pathogen in brinjal. *Archives of Phytopathology and Plant Protection*. 47(4): 398-406.
- 63. Selastin Anthony R, Gopalasamy G, Senthilkumar M (2015) First report of bacterial wilt caused by *Ralstonia solanacearum* race I biovar I in eggplant (*Solanum melongena*) in Tamil Nadu, Southern India. *Plant Disease*. 99(9):1271.

- 64. Balamurugan A, Kumar A, Muthamilan M, Sakthivel K, Vibhuti M, Ashajyothi M, Sheoran N, Kamalakannan A, Shanthi A, Arumugam T (2018) Outbreak of tomato wilt caused by *Ralstonia solanacearum* in Tamil Nadu, India and elucidation of its genetic relationship using multilocus sequence typing (MLST). *European Journal of Plant Pathology*. 151(3): 831-839.
- 65. Sakthivel K, Gautam RK, Kumar K, Dam Roy S, Kumar A, Devendrakumar C, Vibhuti M, Neelam S, Vinatzer BA (2016) Diversity of Ralstonia solanacearum strains on the Andaman Islands in India. *Plant Disease*. 100(4): 732-738.
- 66. Shekhawat GS, Singh R, Kishore V (1978) Distribution of bacterial wilt and races and biotypes of the pathogen in India. *Journal of the Indian Potato Association*. *5*(3): 155-165.
- 67. Bhanwar RR, Tiwari PK, Dantre RK, Saxena RR, Tiwari A, Kotasthane A (2021) Determination of Races and Biovars of *Ralstonia solanacearum* causing Bacterial Wilt of Brinjal in Chhattisgarh, India. *International Journal of Current Microbiology and Applied Science*. 10(06): 575-586.
- 68. Saini M, Sagar V, Gupta M, Sharma SK, Saini R (2025) Identification, characterization and genetic diversity of *Ralstonia pseudosolanacearum* causing bacterial wilt of tomato in Himachal Pradesh, India. *Physiological and Molecular Plant Pathology*. 138:102684.
- 69. Coupat B, Chaumeille-Dole F, Fall S, Prior P, Simonet P, Nesme X, Bertolla F (2008) Natural transformation in the *Ralstonia solanacearum* species complex: number and size of DNA that can be transferred. *FEMS microbiology ecology*. 66: 14-24.
- 70. Wicker E, Lefeuvre P, de Cambiaire JC, Lemaire C, Poussier S, Prior P (2012) Contrasting recombination patterns and demographic histories of the plant pathogen *Ralstonia solanacearum* inferred from MLSA. *The ISME Journal*. 6: 961-974.
- 71. Buddenhagen I, Sequeira L, Kelman A (1962) Designation of races in *Pseudomonas solanacearum*. *Phytopathology*. 52:726.
- 72. Hayward A (1964) Characteristics of Pseudomonas solanacearum. The Journal of Applied Bacteriology. 27: 265-277.
- 73. Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L and Kappler U (2014) Polyphasic taxonomic revision of the *Ralstonia solanacearum* species complex: proposal to emend the descriptions of *Ralstonia solanacearum* and *Ralstonia syzygii* and reclassify current *R. syzygii* strains as *Ralstonia syzygii* subsp. syzygii subsp. nov., *R. solanacearum* phylotype IV strains as *Ralstonia syzygii* subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as *Ralstonia syzygii* subsp. celebesensis subsp. nov. and *R. solanacearum* phylotype I and III strains as *Ralstonia pseudosolanacearum* sp. nov. International Journal of Systematic and Evolutionary Microbiology. 64: 3087-3103.

- 74. Prior P, Ailloud F, Dalsing BL, Remenant B, Sanchez B, Allen C (2016) Genomic and proteomic evidence supporting the division of the plant pathogen *Ralstonia* solanacearum into three species. *BMC Genomics*. 17:90.
- 75. Peeters N, Guidot A, Vailleau F and Valls M (2013) *Ralstonia solanacearum*, a widespread bacterial plant pathogen in the post-genomic era. *Molecular plant pathology*. 14(7): 651-662.
- 76. Guidot A, Coupat B, Fall S, Prior P and Bertolla F (2009) Horizontal gene transfer between *Ralstonia* solanacearum strains detected by comparative genomic hybridization on microarrays. *ISME Journal*. 3: 549-562.
- 77. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. <u>Nature Reviews Microbiology</u>. 3: 679-687.
- 78. Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, Fegan M, Pruvost O, Elbaz M, Calteau A, Salvignol G, Mornico D, Mangenot S, Barbe V, Médigue C, Prior P (2010) Genomes of three tomato pathogens within the *Ralstonia solanacearum* species complex reveal significant evolutionary divergence. *BMC Genomics*. 11: 379.
- 79. Remenant B, de Cambiaire JC, Cellier G, Jacobs JM, Mangenot S, Barbe V, Lajus A, Vallenet D, Medigue C, Fegan M and Allen C (2011) *Ralstonia syzygii*, the blood disease bacterium and some Asian *R. solanacearum* strains form a single genomic species despite divergent lifestyles. *PLoS One*. 6(9): 24356.
- 80. Remenant B, Babujee L, Lajus A, Medigue C, Prior P, Allen C (2012) Sequencing of K60, type strain of the major plant pathogen *Ralstonia solanacearum*. *Journal of Bacteriology*. 194: 2742–2743.
- 81. Coupat-Goutaland, B, Bernillon D, Guidot A, Prior P, Nesme X, Bertolla F (2011) *Ralstonia solanacearum* virulence increased following large interstrain gene transfers by natural transformation. *Molecular Plant-Microbe Interactions*. 24: 497-505.
- 82. Bertolla F, Van Gijsegem F, Nesme X, Simonet P (1997) Conditions for natural transformation of *Ralstonia* solanacearum. Applied and Environmental Microbiology. 63: 4965-4968.
- 83. Bertolla F, Frostega°rd A, Brito B, Nesme X, Simonet P (1999) During infection of its hosts, the plant pathogen *Ralstonia solanacearum* naturally develops a state of competence and exchanges genetic material. *Molecular Plant-Microbe Interactions*.12:467-472.
- 84. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L and Chandler M (2002) Genome sequence of the plant pathogen *Ralstonia solanacearum*. *Nature*. 415(6871): 497-502.

- 85. Genin S, Boucher C (2004) Lessons learned from the genome analysis of *Ralstonia solanacearum*. *Annual Review of Phytopathology*. 42: 107-13.
- 86. Albuquerque GM, Santos LA, Felix KC, Rollemberg CL, Silva AM, Souza EB, Cellier G, Prior P, Mariano RL (2014) Moko disease-causing strains of *Ralstonia solanacearum* from Brazil extend known diversity in paraphyletic phylotype II. *Phytopathology*. 104(11): 1175-1182.
- 87. Ailloud F, Lowe TM, Robène I, Cruveiller S, Allen C, Prior P (2016) *In planta* comparative transcriptomics of host-adapted strains of *Ralstonia solanacearum*. *PeerJ*. 4: 1549.
- 88. Santiago TR, Lopes CA, Caetano-Anollés G and Mizubuti ESG (2017) Phylotype and sequevar variability of *Ralstonia solanacearum* in Brazil, an ancient centre of diversity of the pathogen. *Plant Pathology*. 66: 383–92.
- 89. Ramírez M, Moncada RN, Villegas-Escobar V, Jackson RW and Ramírez CA (2020) Phylogenetic and pathogenic variability of strains of *Ralstonia solanacearum* causing moko disease in Colombia. *Plant Pathology*. 69(2): 360-369
- 90. Ghorai AK, Dutta S, Roy Barman A (2022) Genetic diversity of *Ralstonia solanacearum* causing vascular bacterial wilt under different agro-climatic regions of West Bengal, India. *PLoS ONE*.17(9): e0274780.
- 91. Tan X, Qiu H, Li F, Cheng D, Zheng X, Wang B, Huang M, Li W, Li Y, Sang K, Song B (2019) Complete genome sequence of sequevar 14M *Ralstonia solanacearum* strain HA4-1 reveals novel type III effectors acquired through horizontal gene transfer. *Frontiers in Microbiology*. 10: 1893.
- 92. Remigi P, Capela D, Clerissi C, Tasse L, Torchet R, Bouchez O, Batut J, Cruveiller S, Rocha EP, Masson-Boivin C (2014) Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer. *PLoS biology*. 12(9): 1001942.
- 93. Susianto G, Farid MM, Dhany NR, Addy HS (2014) Host Range for Bacteriophages that Infect Bacterial Blight Pathogen on Soybean. *Procedia Environmental Sciences*. 20:760-766.
- 94. Wafula P, Amata R, Akhwale J (2025) Evaluation of Bacteriophages for the Biocontrol of Tomato wilt Disease Caused by *Ralstonia solanacea* rum. *Advances in Molecular Imaging*. 14: 1-26.
- 95. Dey P, Sen SK (2023) A REVIEW ON SOLANACEOUS PLANT DISEASES CAUSED BY *RALSTONIA SOLANACEARUM* HAVING SERIOUS ECONOMIC IMPACT. *PlantArchives*. 23(2).
- 96. Agrios GN (2005). Plant pathology. Elsevier.
- 97. Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. <u>International Microbiology</u>. 6: 245-252.

- 98. Ramesh R, GS Phadke (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by *Ralstonia solanacearum*. *Crop Protection*. 37: 35
- 99. Kurabachew H, K Wydra (2013) Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by *Ralstonia solanacearum*. Biological Control. 67(1):75-83.
- 100. Almasoudi NM, Sallam NM, Ali EF, Alqurashi AS, Issa AA, Althobaiti F, Housny M, AlOmari H, Abo-Elyousr KA (2025) Development of Bacillus spp for controlling wilt disease and improving the growth of tomato. *European Journal of Plant Pathology*. 172(2):355-66.
- 101. Xue QY, Chen Y, Li SM, Chen LF, Ding GC, Guo DW, Guo JH (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against *Ralstonia* wilt of tomato. *Biological Control.* 48(3): 252-258.
- 102. Nion YA, K Toyota (2008) Suppression of bacterial wilt and Fusarium wilt by a *Burkholderia nodosa* strain isolated from Kalimantan soils, Indonesia. *Microbes and Environments*. 23(2): 134-141.
- 103. Dowarah B, Agarwal H, Krishnatreya DB, Sharma PL, Kalita N, Agarwala N (2021) Evaluation of seed associated endophytic bacteria from tolerant chilli cv. firingi jolokia for their biocontrol potential against bacterial wilt disease. *Microbiology Research*. 248: 126751.
- 104. Mohammed AF, Oloyede AR, Odeseye AO (2020) Biological control of bacterial wilt of tomato caused by *Ralstonia solanacearum* using pseudomonas species isolated from the rhizosphere of tomato plants. *Archives of Phytopathology and Plant Protection*. 53:116.
- 105. Agarwal H, Dowarah B, Baruah PM, Bordoloi KS, Krishnatreya DB, Agarwala N (2020) Endophytes from *Gnetum gnemon* l can protect seedlings against infection of the phytopathogenic bacterium *R. solanacearum* as well as promote plant growth in tomato. *Microbiological Research*. 238: 126503.
- 106. Suseela Bhai R, Prameela TP, Vincy K, Biju CN, Srinivasan V, Nirmal Babu K (2019) Soil solarization and amelioration with calcium chloride or *Bacillus licheniformis*- an effective integrated strategy for the management of bacterial wilt of ginger incited by *Ralstonia* pseudosolanacearum. European Journal of Plant Pathology.154 (4): 903-907.
- 107. Wiesel L, Newton AC, Elliott I, Booty D, Gilroy EM, Birch PR, Hein I (2014) Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in plant science. 21(5): 655.
- 108. Safdarpour F, Khodakaramian G (2017) 'Endophytic Bacteria Suppress Bacterial Wilt of Tomato Caused by *Ralstonia solanacearum* and Activate Defense-related Metabolites. *Journal of Microbial Biology*. 6(24): 41-54.

- 109. Das P, Kashyap S, Sharma I, Ray SK, Agarwala N (2025) Exploration of endophytic and rhizospheric bacteria of invasive plant *Xanthium strumarium* L. reveals their potential in plant growth promotion and bacterial wilt suppression. *Brazilian Journal of Microbiology*.1-23.
- 110. Thomashow LS, Bonsall RE, Weller DM (1997) "Antibiotic production by soil and rhizosphere microbes in situ," in Manual of Environmental Microbiology, eds CJ Hurst, GR Knudsen, MJ McInerney, LD Stetzenbach, MV Walter (Washington, DC: ASM Press). 493–499.
- 111. McNeely D, Chanyi RM, Dooley JS, Moore JE, Koval SF (2017) Biocontrol of *Burkholderia cepacia* complex bacteria and bacterial phytopathogens by *Bdellovibrio bacteriovorus*. *Canadian Journal of Microbiology*. 63: 350–358.
- 112. Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by *Glomus versiforme* inhibits *Ralstonia solanacearum*. *Journal of phytopathology*. 152(10):537-42.
- 113. Khan RA, Najeeb S, Mao Z, Ling J, Yang Y, Li Y, Xie B (2020) Bioactive secondary metabolites from *Trichoderma* spp. against phytopathogenic bacteria and root-knot nematode. *Microorganisms*.8(3):401.
- 114. Hase S, A Shimizu, K Nakaho, S Takenaka, H Takahashi (2006) Induction of transient ethylene and reduction in severity of tomato bacterial wilt by *Pythium oligandrum*. *Plant Pathology*. 55(4): 537-543.
- 115. Gomes AT, Smania Júnior A, Seidel C, Smania ED, Honda NK, Roese FM, Muzzi RM (2003) Antibacterial activity of orsellinates. *Brazilian Journal of Microbiology*. 34:194-6.
- 116. Segarra G, Casanova E, Avilés M, Trillas I (2010) *Trichoderma asperellum* strain T34 controls *Fusarium* wilt disease in tomato plants in soilless culture through competition for iron. *Microbial Ecology*. 59:141–149.
- 117. Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. *Biological Control*. 117:147–157.
- 118. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M (2004) *Trichoderma* species opportunistic, avirulent plant symbionts. *Nature Reviews Microbiology*. 2: 43–56.
- 119. Harman GE (2006) Overview of mechanisms and uses of *Trichoderma* spp. *Phytopathology*. 96: 190–194.
- 120. Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) *Trichoderma*-plant-pathogen interactions: advances in genetics of biological control. Indian Journal of Microbiology. 52: 522–529.
- 121. Karlsson M, Atanasova L, Jensen DF, Zeilinger S (2017) Necrotrophic mycoparasites and their genomes. *Microbiology Spectrum*. 5.

- 122. Nygren K, Dubey M, Zapparata A, Iqbal M, Tzelepis GD, Durling MB, Jensen DF, Karlsson M (2018) The mycoparasitic fungus *Clonostachys rosea* responds with both common and specific gene expression during interspecific interactions with fungal prey. *Evolutionary Applications*. 11(6):931-49.
- 123. Ramírez M, Neuman BW, Ramírez CA (2020) Bacteriophages as promising agents for the biological control of Moko disease (*Ralstonia solanacearum*) of banana. *Biological Control*. 149: 104238.
- 124. Alvàrez B, Lopez MM, Biosca EG (2019) Biocontrol of the major plant pathogen *Ralstonia solanacearum* in irrigation water and host plants by novel waterborne lytic bacteriophages. *Frontiers In Microbiology*. 10: 2813.
- 125. Biosca EG, Català-Senent JF, Figàs-Segura À, Bertolini E, Lopez MM, Alvarez B (2021) Genomic analysis of the first European bacteriophages with depolymerase activity and biocontrol efficacy against the phytopathogen *Ralstonia solanacearum*. *Viruses*. 13 (12): 2539.
- 126. Yamada, T., Kawasaki, T., Nagata, S., Fujiwara, A., Usami, S., and Fujie, M. (2007). New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153 (8), 2630–2639. doi: 10.1099/mic.0.2006/001453-0
- 127. Bettina M Knoll, Eleftherios Mylonakis (2014) Antibacterial Bioagents Based on Principles of Bacteriophage Biology: An Overview. *Clinical Infectious Diseases*. 58 (4): 528–534.
- 128. Hasanien YA, Abdel-Aal MH, Younis NA, Askora A, El Didamony G (2024) Bacteriophages as Promising Agents for Biocontrol of *Ralstonia solanacearum* Causing Bacterial Wilt Disease. *Egyptian Journal of Botany*. 64(1): 277-291.
- 129. Ding C, Shen Q, Zhang R, Chen W (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (*Ralstonia solanacearum*) of potato. *Plant and soil*. 366(1): 453-466.
- 130. Wang N, Wang L, Zhu K, Hou S, Chen L, Mi D, Gui Y, Qi Y, Jiang C, Guo J-H (2019) Plant Root Exudates Are Involved in Bacillus cereus AR156 Mediated Biocontrol Against Ralstonia solanacearum. Frontiers In Microbiology. 10: 98.
- 131. Im SM, Yu NH, Joen HW, Kim SO, Park HW, Park AR, Kim JC (2020) Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing *Bacillus methylotrophicus* DR-08. *Pesticide Biochemistry and Physiology*. 163:130-7.
- 132. Chandrasekaran M, Subramanian D, Yoon E, Kwon T, Chun SC (2016) Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by *Ralstonia solanacearum*. *Plant Pathology Journal*. 32(3):216-27.

- 133. Yang W, Xu Q, Liu HX, Wang YP, Wang YM, Yang HT, Guo JH (2012) Evaluation of biological control agents against *Ralstonia* wilt on ginger. *Biological control*. 62(3): 144-151.
- 134. Huang JF, Wei Z, Tan SY, Mei XL, Yin SX, Shen QR, Xu YC (2013) The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. *Applied Soil Ecology*. 72:79–84.
- 135. Abd Alamer IS, Tomah AA, Li B, Zhang JZ (2020) Isolation, identification and characterization of rhizobacteria strains for biological control of bacterial wilt (*Ralstonia solanacearum*) of eggplant in China. *Agriculture*. 10(2): 37.
- 136. Chattopadhyay P, Banerjee G, Handique PJ (2022) Use of an abscisic acid producing *Bradyrhizobium japonicum* isolate as biocontrol agent against bacterial wilt disease caused by *Ralstonia solanacearum*. *Journal of Plant Diseases and* Protection. 29: 1–11.
- 137. S Murugaiyan, JY Bae, J Wu, SD Lee, HY Um, HK Choi, E Chung, JH Lee, SW Lee (2011) Characterization of filamentous bacteriophage PE226 infecting *Ralstonia solanacearum* strains, *Journal of Applied Microbiology*. 110 (1): 296–303.
- 138. Thapa Magar R, Lee SY, Kim HJ, Lee SW (2022) Biocontrol of bacterial wilt in tomato with a cocktail of lytic bacteriophages. *Applied Microbiology and Biotechnology*. 106:3837–3848.
- 139. Yuliar, Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by *Ralstonia solanacearum*. *Microbes and Environments*. 30(1):1-11.
- 140. Lin WanChi LW, Lu ChingFang LC, Wu JiaWei WJ, Cheng MingLung CM, Lin YuMei LY, Yang NingSun YN, Black L, Green SK, Wang JawFen WJ, Cheng ChiuPing CC (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. *Transgenic Research.* 13: 567–581.
- 141. McAvoy T, Freeman JH, Rideout SL, Olson SM, Paret ML (2012) Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. *HortScience*, 47(5): 621-625
- 142. Rivard CL, O'connell S, Peet MM, Welker RM, Louws FJ (2012) Grafting tomato to manage bacterial wilt caused by *Ralstonia solanacearum* in the southeastern United States. *Plant disease*. 96(7): 973-978.
- 143. Kim BS, French E, Caldwell D, Harrington EJ, Iyer-Pascuzzi AS (2016). Bacterial wilt disease: Host resistance and pathogen virulence mechanisms. *Physiological and Molecular Plant Pathology*. 95: 37-43.
- 144. Lebeau A, Gouy M, Daunay MC, Wicker E, Chiroleu F, Prior P, Frary A, Dintinger J (2013) Genetic mapping of a major dominant gene for resistance to *Ralstonia solanacearum* in eggplant. *Theoretical and Applied Genetics*. 126(1):143-58.

- 145. Gutarra L, Kreuze J, Lindqvist-Kreuze H, De Mendiburu F (2015) Variation of resistance to different strains of *Ralstonia solanacearum* in highland tropics adapted potato genotypes. *American Journal of Potato Research*. 92(2):258-65.
- 146. Aslam MN, Mukhtar T, Ashfaq M, Hussain MA (2017) Evaluation of chili germplasm for resistance to bacterial wilt caused by *Ralstonia solanacearum*. *Australasian Plant Pathology*. 46(3):289-92.
- 147. Kumar S, Ramanjini Gowda PH, Saikia B, Debbarma J, Velmurugan N, Chikkaputtaiah C (2018) Screening of tomato genotypes against bacterial wilt (*Ralstonia solanacearum*) and validation of resistance linked DNA markers. *Australasian Plant Pathology*. 47(4):365-74.
- 148. Kumar M, Srinivasa V, Kumari M (2018) Screening of tomato line/varieties for bacterial wilt (*Ralstonia solanacearum*) resistance in hill zone of Karnataka India. <u>International Journal of Current Microbiology and Applied Sciences.</u> 7:1451-5.
- 149. Ro N, Haile M, Oh H, Ko HC, Yi J, Na YW, Hur O (2024) Evaluation of Pepper (*Capsicum* spp.) Germplasm Collection for Bacterial Wilt (*Ralstonia solanacearum*) Resistance. *Agronomy*. 14(8): 1753.
- 150. Shin IS, Hsu JC, Huang SM, Chen JR, Wang JF, Hanson P, Schafleitner R (2020) Construction of a single nucleotide polymorphism marker based QTL map and validation of resistance loci to bacterial wilt caused by *Ralstonia solanacearum* species complex in tomato. *Euphytica*. 216: 54.
- 151. Méline V, Caldwell DL, Kim BS, Khangura RS, Baireddy S, Yang C, Sparks EE, Dilkes B, Delp EJ, Iyer-Pascuzzi AS (2023) Image-based assessment of plant disease progression identifies new genetic loci for resistance to Ralstonia solanacearum in tomato. Plant Journal.
- 152. Siddique MI, Silverman E, Louws, F, Panthee DR (2024) Quantitative Trait Loci Mapping for Bacterial Wilt Resistance and Plant Height in Tomatoes. *Plants*. 13:876.
- 153. Barchenger DW, Hsu Y, Ou J, Lin Y, Lin Y, Balendres MAO, Hsu Y Schafleitner R, Hanson P (2022) Whole genome resequencing and complementation tests reveal candidate loci contributing to bacterial wilt (*Ralstonia* sp.) resistance in tomato. *Scientific Reports*. 12:8374.
- 154. Kim B, Hwang IS, Lee HJ, Lee JM, Seo E, Choi D, Oh CS (2018) Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. *Theoretical and Applied Genetics*. 131: 1017–1030.
- 155. Ren ZY (2019) Cloning of Tomato Bacterial Wilt Resistance Gene and Development of High-Throughput. Ph.D Thesis, Huazhong Agricultural University, Wuhan, China.

- 156. Xiao X, Lin W, Nie H, Duan Z, Liu K (2024) QTL Mapping for Bacterial Wilt Resistance in Eggplant via Bulked Segregant Analysis Using Genotyping by Sequencing. *Agronomy*. 14(6): 1159.
- 157. Salgon S, Jourda C, Sauvage C, Daunay MC, Reynaud B, Wicker E, Dintinger, J (2017) Eggplant resistance to the *Ralstonia solanacearum* species complex involves both broad-spectrum and strain-specific quantitative trait loci. *Frontiers in plant science*. 8:828.
- 158. Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash CS, Zhuang W, He G (2016) QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). *Molecular Breeding*. 36(2):13.
- 159. Habe I, Miyatake K, Nunome T, Yamasaki M, Hayashi T (2019) QTL analysis of resistance to bacterial wilt caused by *Ralstonia solanacearum* in potato. *Breeding Science*. 69(4):592-600.
- 160. Ren ZY (2019) Cloning of Tomato Bacterial Wilt Resistance Gene and Development of High-Throughput. Ph.D Thesis, Huazhong Agricultural University, Wuhan, China.
- 161. Lee S, Chakma N, Joung S, Lee JM, Lee J (2022) QTL Mapping for Resistance to Bacterial Wilt Caused by Two Isolates of *Ralstonia solanacearum* in Chili Pepper (*Capsicum annuum* L.). *Plants* (Basel). 11(12):1551.
- 162. Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. *Soil and Tillage Research*. 72: 169–180.
- 163. Ahmad U, Alam SS, Ahmad M, Khan R, Anwar S (2022) Management of *Alternaria solani* in tomato using *Withania coagulans*-an alternative to chemical control. *Journal of agricultural science and technology.* 24 (2): 465–476.
- 164. Cardoso SC, Soares ACF, Brito ADS, Laranjeira FF, Ledo CAS, dos Santos AP (2006) Control of tomato bacterial wilt through the incorporation of aerial part of pigeon pea and crotalaria to soil. *Summa Phytopathologica*. 32: 27–33.
- 165. Islam TMD, Toyota K (2004) Effect of moisture conditions and pre incubation at low temperature on bacterial wilt of tomato caused by *Ralstonia solanacearum*. *Microbes and Environments*. 19: 244–247.

- 166. Fan WW, Yuan GQ, Li QQ, Lin W (2014) Antibacterial mechanisms of methyl gallate against Ralstonia solanacearum. *Australasian Plant Pathology*. 43(1):1-7.
- 167. Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. *Bioresource Technology*. 74:35–47.
- 168. Youssef SA, Tartoura KA (2013) Compost enhances plant resistance against the bacterial wilt pathogen *Ralstonia solanacearum* via up-regulation of ascorbate-glutathione redox cycle. *European Journal of Plant Pathology*. 137: 821-834.
- 169. Terblanche J, de Villiers DA (1998) The Suppression of *Ralstonia solanacearum* by Marigolds. In: Prior P, Allen C, Elphinstone J, editors. Bacterial wilt disease. Berlin: Springer.p. 326–328.
- 170. Matsushita Y, Hwang YH, Sugamoto K, Matsui T (2006) Antimicrobial activity of heartwood components of sugi (*Cryptomeria japonica*) against several fungi and bacteria. *Journal of Wood Science*. 52:552–556.
- 171. Ordóñez RM, Ordóñez AAL, Sayago JE, Moreno MIN, Isla MI (2006) Antimicrobial activity of glycosidase inhibitory protein isolated from *Cyphomandra betacea* Sendt. fruit. *Peptides*. 27:1187–1191.
- 172. Acharya S, Srivastava RC (2009) Bactericidal properties of the leaf extracts of *Psidium guajava* and *Psidium guineense* against *Ralstonia solanacearum* by two analytical methods. *Vegetos*. 22:33–37.
- 173. Alfano G, Lustrato G, Lima G, Vitullo D, Ranalli G (2011) Characterization of composted olive mill wastes to predict potential plant disease suppressiveness. *Biological Control*. 58:199–207.
- 174. Li L, Feng X, Tang M, Hao W, Han Y, Zhang G, Wan S (2014) Antibacterial activity of Lansiumamide B to tobacco bacterial wilt (*Ralstonia solanacearum*). *Microbiological Research*. 169:522–526.
- 175. Yihune E, Yemata G (2019) Antibacterial activity of medicinal plant extracts against *Ralstonia solanacearum* (Smith) that causes bacterial wilt in hot pepper (*Capsicum annuum l.*). *Acta Scientiarum: Biological Sciences.* 41: e45402-e45402.