

10 June 2025: Received 29 July 2025: Revised 07 August 2025: Accepted 05 September 2025: Available Online

https://aatcc.peerjournals.net/

Original Research Article

Open Access

Unveiling the molecular profile of apple-beetroot blended powder through FTIR

Seerat Gupta, Neeraj Gupta*, Monica Reshi, Monika Sood, Julie D. Bandral and Daman Preet Kour

Division of Post Harvest Management, FoH&F, Sher-e-Kashmir University of Agricultural Sciences and Technology, Chatha, Jammu-180009, J&K, India

ABSTRACT

Fruit and vegetable are highly perishable commodities, they are prone to deteriorate rapidly after harvest due to lack of adequate postharvest facilities. Blending is the process of mixing two or more fruits pulp, juice or their concentrates which results in good combination of taste and nutritive value. Fruits and vegetables are abundant reserves of antioxidants, bioactive compounds, vitamins and minerals. In this research, the apple and beetroot pulp were used to obtain powders via cabinet drying at $60\pm2^{\circ}$ C. The study employed Fourier transform infrared spectroscopy (FTIR), a sophisticated machine learning technique, to analyze powdered apples and apple-beetroot blends. The purpose of this study was to use the FTIR technique to assess the impact of processing on the powder's structure and to present precise information about the properties of powders. By determining the main functional groups, Fourier Transform Infrared Spectroscopy analysis of the powder further verified the presence of phenolics and betalains. Additionally, the presence of significant aromatic acid, ester and alcohol groups was revealed by Fourier transform infrared spectroscopy analysis. This product offer tremendous nutritional value and are ideally suited for wide range of consumers belonging to any age groups.

Keywords: Apple, Beetroot, Powder, Phenols, Antioxidant activity, Ascorbic acid, Functional groups, FTIR.

Introduction

The nutrition's influence on human health has led to a practical shift in consumer preferences from highly processed ready-toeat foods to natural or minimally processed food. Numerous scientists and researchers have demonstrated in recent years the importance of phytochemicals, particularly plant-based phytochemicals, in preventing and curing several feared human diseases [1,2]. Apple (Golden Delicious) is a fruit that is rich in proteins, fibres, vitamins and minerals, and has a wonderful flavour and taste [3]. The abundance of phytochemicals like epicatechin, quercetins, chlorogenic acid, phloretins, flavanols, procyanidin B₂ and procyanidins contributes to the antioxidative, chemopreventive, anti-neurodegenerative and anti-obesity qualities of apple phenolics [4]. The intake of apples and apple-based products has therefore expanded significantly as a result of their high phytochemical composition. Like other agricultural products with high moisture content, apples are subject to undesirable reactions that cause them to lose their quality [5,6]. Beetroot is a highly esteemed root crop due to its diverse diet and its use as a salad, vegetable and herb worldwide [7]. Beetroots' phytochemical composition exhibits the existence of dietary fibres, proteins and ash, all of which are nutrient-rich as well as health-promoting. A vast range of vitamins and minerals found in beetroot highlights its health

*Corresponding Author: Neeraj Gupta

DOI: https://doi.org/10.21276/AATCCReview.2025.13.04.293 © 2025 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

relevance [8]. Beetroot also contains a notable amount of health-promoting colouring components, for instance betacyanin, betalain, betaxanthin and carotenoids, which exemplify antiviral, antioxidant and antibacterial qualities. Compote and drying are the preservation techniques used to extend the shelf life and make fruits and vegetables available throughout the year [6]. When it comes to yield, cost, energy and minimizing the amount of time that items are exposed to high temperatures, the drying process is preferable to its alternatives [9]. FTIR spectra analysis may be a valuable tool for differentiating between cultivars according to the amount of flavonoids, phenols, total carotenoids and other bioactive chemicals. In order to ensure that the apple powder could be dried in a cabinet, the current study was conducted to assess its applicability and then compare it to the developed applebeetroot blended powder.

Material and Methods

Following the standard process provided by [10], the blended powder was made from blends of apple and beetroot pulp (Figure 1) in the department of Post Harvest Management, SKUAST-Jammu, India. Apple and beetroot pulp were blended in different proportions to prepare the powder, *viz.*, T_1 (100:00), T_2 (90:10), T_3 (80:20), T_4 (70:30), T_5 (60:40) and T_6 (50:50). At 60±2°C, the prepared mixes were dried for at least 8 hours in a cabinet dryer. Air velocity was set at 230 m/min and fan speed was set at 850 rpm.A grinder was used to grind the samples for at least 20 sec after they had been dried and allowed to cool to room temperature. The resulting powder was further sieved (60 mesh) and transferred into LDPE bags. After that, FTIR analysis was performed on the control sample, which was apple powder

 (T_1) alone and the best combination sample, which was T_4 (apple pulp: beetroot pulp: 70:30).

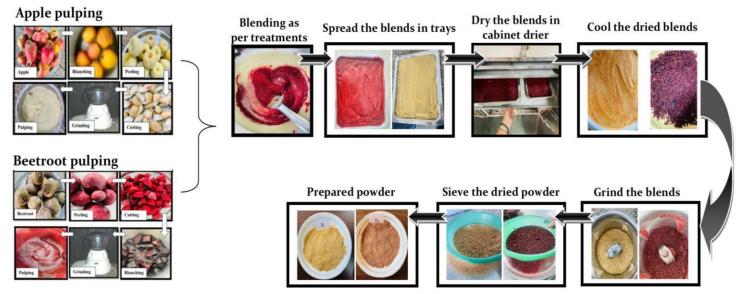


Figure 1: Preparation of apple and apple-beetroot blended powders

The method outlined by [11] was utilized to estimate ascorbic acid, with 2, 6-dichlorophenol indophenol dye. Total phenolic content of sample was estimated by Folin-Ciocalteau method [12]. Free radical scavenging activity was estimated using 1,1-diphenyl-2-picryl-hydrazyl [13]. The anthocyanin content was calculated at 530 nm [11]. Approximately 5 mg of sample and 5 mg of KBr were used for the qualitative analysis, which involved FTIR analysis of the apple-beetroot blended powder using a Shimadzu 8400S FTIR spectrometer fitted with a KBr beam splitter. The FTIR spectrophotometer was used with a maximum resolution of -0.85 cm⁻¹ and a spectrum range of 4000-400 cm⁻¹. Stuart's instructions for interpreting the spectra were used [14].

Result and Discussion

Proximate composition

The ascorbic acid in freshly prepared apple and beetroot powders were depicted (Table 1) as 11.29 ± 0.05 mg/100g and 4.95 ± 0.01 mg/100g, respectively which were closely related to the findings of [15], [9] and [16]. The anthocyanins content recorded in beetroot powder was $6.18\pm0.80\%$, which coincides with the findings of [10]. In freshly prepared apple and beetroot powders, the antioxidant activity was recorded as $5.39\pm0.12\%$ and $12.63\pm0.23\%$, respectively which were in conformity with the findings of [17], [18] and [19]. The total phenols of apple powder were observed as 7.74 ± 0.07 mg GAE/100g, whereas of beetroot powder were observed as 16.27 ± 0.15 mg GAE/100g, respectively which were supported by the findings of [15], [20] and [21].

Table 1: Proximate composition of apple powder and beetroot powder		
Parameters	Apple powder	Beetroot powder
Ascorbic acid (mg/100g)	11.29±0.05	4.95±0.01
Anthocyanins (%)	-	6.18±0.80
Antioxidant activity (%)	5.39±0.12	12.63±0.23
Phenols (mg GAE/100g)	7.74±0.07	16.27±0.15

FTIR analysis

Apple and apple-beetroot (70:30) powders' micromolecular compositions were investigated using FTIR analysis. Figure 2a displays the FTIR spectra of apple powder. The frequency range at which the most prominent absorption peak was detected was 3305 cm⁻¹. O–H bond stretching and hydrogen bond vibrations are characterized by absorption bands between 3000 and 3500 cm⁻¹[9].

In sugars, the C-H stretching connections fall within the frequency range of 2850 to 3000 cm⁻¹. The peak in the frequency range of 2931 cm⁻¹ was caused by C-H stretching. The valence resonance of CH, groups induces absorption bands for carbohydrates to form at a frequency of 2930 cm⁻¹, according to [22]. According to [23], triatomic molecules with double, triple, or even single bonds that remain out of the plane oscillate at lower energy levels and produce absorption bands at lower frequency ranges, whereas biatomic linear chained molecules held in a single plane vibrate at higher energy levels and so produce absorption peaks at higher frequency ranges. Peaks in the 1600-1695 cm⁻¹ and 1500-1585 cm⁻¹ frequency ranges correspond to amide C=O stretching, and α-CH₂bending and C=O stretching of carboxylic acids and esters, respectively. The carbonyl stretching vibration in the amide bond is responsible for the absorption bond at 1634 cm⁻¹. 1415 cm⁻¹ is ascribed to either the O-H bonding vibration or the C-N stretching. The bioactive chemicals known as phenols, which determine the medicinal efficacy of plants, are known to absorb frequencies between 1270 and 1140 cm⁻¹, peaking at 1256 cm⁻¹. The peak that appears in the frequency range of 1060-1170 cm⁻¹ is caused by stretching oscillations in the C-O bonds of organic acids and sugars. The principal cause of the frequency range of 1100-1000 cm⁻¹, with a peaks at 1047 cm⁻¹ and 1026 cm⁻¹, is the vibration of the C-O-H group prevalent in primary and secondary alcohols. Apple powder's primary flavoring ingredients is alcohol, which is found in fruits [9]. CH bending and ring puckering are associated with the absorption peak between 780 and 846 cm⁻¹, whereas =CH and =CH, bending are highlighted by the peak observed in the spectral range of 880-1010 cm⁻¹. The presence of a C-C ring is indicated by the peaks in the FTIR spectra at 580 cm ¹ and 517 cm⁻¹.

The spectrum for apple-beetroot (70:30) blended powder (Figure 2b) at the optimized conditions showed a sharp peak at 3308 cm⁻¹due to O–H stretching vibration, and the peak at 2932 cm⁻¹ that can be assigned to C–H stretching vibration of alkanes attributes to presence of carboxylic acids having O–H stretching showing the presence of citric acid [24]. The absorption band at 1789 cm⁻¹ is attributes to C=O stretching of aliphatic aldehyde, indicating the presence of aldehydes. The peaks between 1415 cm⁻¹ and 1645 cm⁻¹ indicate the presence of nitrogen-containing functional groups.

Presence of these nitrogen-containing functional groups confirmed the presence of betalains in dried powder [25]. A peak at 1047 cm⁻¹ and 1012 cm⁻¹ in the spectrum corresponds to the C–O–H vibration [26]. The peaks ranged between 1047 to 1398 cm⁻¹ denoting the presence of overtone bands of the O–H and C–H groups indicating the presence of different types of carbohydrates such as cellulose, hemicelluloses, lignin, pectin. On the other hand, exact peeks at 1047 cm⁻¹ and 1238 cm⁻¹ also denoting the presence of C–O stretching indicating the presence of phenols because C–O stretching in alcohols [27]. Absorption peak obtained in the frequency range of 550 and 520 cm⁻¹ is the characteristic of C–C ring. The existence of functional groups is so obvious through comprising spectrums of the FTIR.

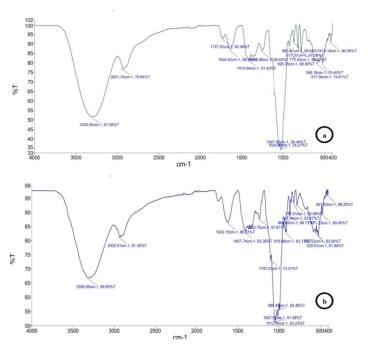


Figure 2: FTIR analysis of a) apple powder and b) apple-beetroot (70:30) blended powder

Conclusion

This present study's methodology can verify the existence of key chemical components, including alcohols, phenols and aromatic acids, in apple and apple-beetroot powder. Apple powder and apple-beetroot (70:30) blended powder had the highest band intensities in FTIR spectroscopy, with wave numbers of 1026 cm⁻¹ and 1012 cm⁻¹, respectively. The method acquired enables the powders produced by cabinet drying to retain their authenticity and uniformity. Therefore, machine learning seems to be a useful technique for regulating the quality and authenticity of food products. The FTIR results affirmed that the produced powders were nutritionally rich due to the presence of naturally occurring functional groups. In the food industry, fruit, vegetable and their blended powder products thus hold a lot of potential for boosting nutritional value in forthcoming years.

Future scope of the study: Apple and Beetroot powder is a good source of bioactive constituents. Further studies on the incorporation of apple and beetroot powder into various food products like biscuits, snack bars and baked goods to enhance their nutritional value and potentially replace synthetic additives.

Conflict of interest: The authors declare no conflict of interest.

Acknowledgement: The authors sincerely acknowledge the Division of Post Harvest Management, Faculty of Horticulture&Forestry, SKUAST-Jammu for providing laboratory facilities to carry out this research work.

References

- Ginwala, R., Bhavsar, R., DeGaulle, I., Chigbu, P., Jain, P., Khan, Z. K.(2019). Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the antiinflammatory activity of apigenin. Antioxidants.8: 35-48.
- 2. Rupasinghe, H. P. V. (2020). Flavonoids and their disease prevention and treatment potential: recent advances and future perspective. Molecules. 25: 4746-4753.
- 3. Francini, A., Romeo, S., Cifelli, M., Gori, D., Domenici, V., Sebastiani, L. (2017). 1H NMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying. Food Chem. 221: 1206-1213.
- Jan, A., Gull, A., Haq, R., Parray, A., Tabassum, S., Safapuri, T.
 A. (2016). Physico-chemical analysis of apple juice concentrates from Kashmir valley. Am. J. Food Nutr.3(3): 42-45.
- 5. Horuz, E., Bozkurt, H., Karataş, H., Maskan, M. (2018). Simultaneous application of microwave en-ergy and hot air to whole drying process of appleslices: drying kinetics, modeling, temperature pro-file and energy aspect. Heat Mass Transfer. 54: 425-436.
- Roshani, S., Shahidi, S. A., Ghorbani-Hasansaraei, A.,Naghizadeh, Raeisi. S. (2021). Phytochemical content, physicochemical and microstructural properties of apple powder as affected by drying method. Lat. Am. Appl. Res.51(1):27-35.
- 7. Singh SCN. Coloring of food by the use of natural color extracted by beetroot (*Beta vulgaris*), betalain pigment. Sust. Agri Food Env. Res. 2021; 9(1): 142-147.
- 8. Farhan, M., Ahmad, Z., Waseem, M., Mehmood, T., Javed, M. R., Ali, M., Manzoor, M. F. and Goksen, G. (2024). Assessment of beetroot powder as nutritional, antioxidant, and sensory evaluation in candies. *J. Agric. Food Res.* 15: 101023.
- Qadri, T., Naik, H. R., Hussain, S. Z., Ahad, T., Shafi, F., Sharma, M. K. (2022). Comparative evaluation of apple juice concentrate and spray dried apple powder for nutritional, antioxidant and rheological behaviour. Qual. Assur. Saf. Crops Foods. 14(2): 74-85.
- 10. Kaur, S. (2021). Utilization of Beetroot (*Beta vulgarisL*.) for the Development and Nutritional Evaluation of Functional Foods. Ph.D. Thesis, Punjab Agricultural University, Ludhiana, India.
- 11. Ranganna, S. (2014). Handbook of Analysis and Quality Control for Fruit and Vegetable Products (2nd ed.), Tata McGraw Hill Publishing Co. Ltd., New Delhi.

- 12. Ahmed, Z. S. and Abozed, S. S. (2015). Functional and antioxidant properties of novel snack crackers incorporated with Hibiscus sabdariffa by-product. J. Adv. Res. 6(1): 79-87.
- 13. Luo, A. X., He, X. J., Zhou, S. D., Fan, Y. J., He, T., Chun, Z. (2009). In vitro antioxidant activities of a water soluble polysaccharide derived from *Dendrobium nobile* Lindl. Extracts. Int. J. Biol. Macromol. 45: 359-363.
- 14. Kumar, A., Chauhan, G. S. (2010). Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydr.Polym. 82: 454-459.
- 15. Bhat, I. M., Wani, S. M., Mir, S. A., Naseem, Z. (2023). Effect of microwave-assisted vacuum and hot air oven drying methods on quality characteristics of apple pomace powder. Food Prod. Process. Nutr. 5: 26.
- 16. Mudgal, D., Puja., Singh, S., Singh, B., Samsher. (2022). Nutritional composition and value addedproducts of beetroot: A review. J. Curr. Res. Food Sci. 3(1): 1-9.
- 17. Sadowska, A., Swiderski, F., Siol, M., Niedziółka, D., Najman, K. (2022). Functional Properties of Fruit Fibers Preparations and Their Application in Wheat Bakery Products (Kaiser Rolls). Agriculture. 12: 1715.
- 18. Barta, J., Bartova, V. and Sindelkova, T. (2020). Effect of boiling on colour, contents of betalains and total phenolics and on antioxidant activity of colourful powder derived from six different beetroot (*Beta vulgaris* L. var. conditiva) cultivars. Pol. J. Food Nutr. Sci. 70(4): 377-385.
- 19. Hamid, M. G. and Nour, A. A. A. M. (2018). Effect of different drying methods on quality attributes of beetroot (*Beta vulgaris*) slices. World J. Sci. Technol. Sustain. Dev. 2018; 15(3): 287-298.
- 20. Martins, R. B., Nunes, M. C., Gouvinhas, I., Ferreira, L. M. M., Peres, J. A., Barros, A.I.R.N.A, Raymundo, A. (2022). Apple flour in a sweet gluten-free bread formulation: impact on nutritional value, glycemic index, structure and sensory profile. Foods. 11: 3172.

- 21. Bunkar, D. S., Anand, A., Meena, K. K., Goyal, S. K., Paswan, V. K. (2020). Development of production technology for preparation of beetroot powder using different drying methods. Ann. Phytomed. 9(2): 293-301.
- 22. Golubtsova, J. (2017). Study of fruit raw material by Fourier transform infrared spectroscopy. J. Pharmacol. Sci. Res. 9(7): 1081-1090.
- 23. Khan, S., Khan, S., Khan, L., Farooq, A., Akhtar, K., Asiri, A. M. (2018). Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization. https://doi.org/10.1007/978-3-319-92955-2-9.
- 24. Mehdizadeh, S., Ghasemi, N. and Ramezani, M. (2019). The synthesis of silver nanoparticles using Beetroot extract and its antibacterial and catalytic activity. Eurasian Chem. Commun. 545-558.
- 25. Kumar, S. N. A., Ritesh, S. K., Sharmila, G. and Muthukumaran, C (2017). Extraction optimization and characterization of water soluble red purple pigment from floral bracts of Bougainvillea glabra. Arab. J. Chem. 10: S2145-S2150.
- 26. Ajitha, B., Reddy. Y. A. K., Jeon, H. J and Ahn, C. W. (2018). Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv. Powder Technol. 2018; 29(1):86-93.
- 27. Kushwaha, R., Kumar, V., Vyas, G. and Kaur, J. (2018). Optimization of different variable for eco-friendly extraction of betalains and phytochemicals from beetroot pomace. Waste Biomass Valori. 9: 1485-1494.