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	ABSTRACT	
Cereals	play	an	important	role	in	the	human	diet	in	India.	However,	the	yield	rate	varies	across	the	country.	Rajasthan,	which	is	a	
major	contributor	of	the	important	cereal	crops,	i.e.,	Jowar,	Bajara,	Maize,	Wheat,	and	Barley.	The	present	paper	has	been	an	attempt	
to	analyze	the	volatility,	correlations,	and	regime	shifts	of	crop	yields	from	time	series	data	from	1970-71	to	2023-24	on	yields	of	
Jowar,	 Bajara,	 Maize,	 Wheat,	 and	 Barley	 across	 the	 Rajasthan	 state	 of	 India.	 The	 Multivariate	 Analysis,	 Bayesian	 Principal	
Component	Analysis	(BPCA),	Bayesian	Multivariate	GARCH,	and	Markov	Switching	Model	(MSM)	have	been	used	to	analyze	and	
quantify	yield	correlations,	identify	shared	volatility	patterns,	time-varying	volatilities,	and	detect	regime	shifts.	The	data	has	been	
analyzed	and	production	of	graphs	using	the	R	software,	which	is	a	programming	language	speci�ically	designed	for	statistical	
computing	and	graphics.	The	process	of	data	collection	was	constrained	by	incomplete	historical	records	and	inconsistencies	in	yield	
reporting,	which	posed	signi�icant	challenges	for	model	convergence	and	the	reliability	of	parameter	estimation.	Despite	these	
issues,	the	�indings	reveal	strong	positive	correlations	between	Jowar	and	Bajara,	re�lecting	shared	monsoon	dependence.	BPCA	
modeled	standardized	yields	as	a	latent	structure,	estimating	loadings	for	Jowar	with	4	chains,	4000	iterations,	and	δ	(0.95)	to	
address	convergence	issues.	Results	also	indicate	that	PC1	captures	monsoon-driven	volatility	for	coarse	cereals.	Bayes-MGARCH	
analyzed	 52	 log-returns	 with	 a	 constant-correlation	 model,	 outputting	 values	 suggesting	 persistent	 volatility	 and	 positive	
correlations.	Applied	 to	 Jowar	 yields,	MSM	detected	 stable	and	volatile	 regimes,	 potentially	 linked	 to	1980s	policy	 shifts,	with	
probabilities.

Keywords:	Cereals,	Crop	Yield,	BPCA,	GARCH	and	Markov	Switching	Model,	Volatility,	Correlations,	Regime	Shifts..

1 2 3	 4Manoj	Kumar	Sharma ,						Sonu	Jain ,						Bhim	Singh 						and	Arun	Pratap	Singh*

INTRODUCTION
Agriculture in Rajasthan, India, is a cornerstone of livelihoods, 
yet it faces persistent challenges due to the state's semi-arid 
climate, erratic monsoon rainfall, and frequent droughts (23). 
Crops such as Jowar, Bajara, Maize, Wheat, and Barley, critical to 
food security and farmer income, exhibit signi�icant yield 
volatility driven by environmental factors and policy shifts, such 
as the Green Revolution's impact in the 1980s (18). 
Understanding this volatility is essential for developing robust 
risk management strategies, including crop insurance and 
diversi�ication, to mitigate economic losses and enhance 
resilience (5). This study analyzes 53 annual yield observations 
(1970-71 to 2023-24), focusing on these �ive crops in Rajasthan 
to model volatility, correlations, and regime shifts, thereby 
informing agricultural policy and practice.
Yield volatility poses a signi�icant challenge in rain-fed regions 
like Rajasthan, where monsoon variability accounts for 
substantial production risks (11). 

Earlier studies have shown that crop yields in semi-arid India 
are highly sensitive to rainfall patterns, with droughts 
exacerbating income uncertainty for farmers (22). For instance, 
Rajasthan experienced severe droughts in 1987, 2002, and 
2015, which disrupted the yields of coarse cereals like Jowar 
and Bajara (25). Moreover, policy interventions, such as 
subsidies and irrigation expansion post-1980s, have introduced 
structural changes in yield dynamics, necessitating models that 
capture regime shifts (24). Traditional econometric 
approaches, such as Pearson correlations or frequentist 
Principal Component Analysis (PCA), often fail to account for 
uncertainty in small datasets, leading to unreliable estimates 
(1).
The dataset, with only 53 observations, exempli�ies the small-
sample challenge prevalent in regional agricultural studies. 
Conventional volatility models, like Dynamic Conditional 
Correlation GARCH, require approximately 100 data points for 
stable estimation, rendering them unsuitable (9). Bayesian 
methods offer a solution by incorporating prior distributions to 
stabilize estimates, making them ideal for limited data (13). This 
study employs a Bayesian framework comprising Multivariate 
Analysis (Correlation Analysis), Bayesian Principal Component 
Analysis (BPCA), Bayesian Multivariate GARCH (Bayes-
MGARCH), and Markov Switching Model (MSM). 
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These methods leverage Markov Chain Monte Carlo (MCMC) 
estimation to model complex yield dynamics, addressing the 
small-sample constraint while bypassing ̀ dcc�it`'s limitations.
Bayesian approaches have gained traction in agricultural 
economics for their ability to handle uncertainty and small 
datasets (21). BPCA, for instance, models yields as a low-
dimensional latent structure, estimating loadings with credible 
intervals, unlike frequentist PCA's point estimates (28). This is 
particularly relevant for Rajasthan, where shared volatility 
patterns, driven by monsoon cycles, can be captured as principal 
components (4). The Bayesian correlation test, using a Jeffreys-
beta prior, provides robust evidence of co-movements (e.g., 
Jowar-Bajara), critical for diversi�ication strategies (16).
Bayes-MGARCH models time-varying volatilities and 
correlations using log-returns, offering a �lexible alternative to 
`dcc�it` (2). Its constant-correlation structure reduces 
parameter complexity, ensuring stability with 52 returns (29). 
MSM, applied to Jowar yields, detects regime shifts (e.g., stable 
vs. volatile periods), potentially linked to policy changes or 
drought events (15). These methods are supported by MCMC 
diagnostics, such as effective sample size and Gelman-Rubin 
statistic, with δ adjustments to ensure convergence (12).
Rajasthan's agriculture is predominantly rain-fed, with 70% of 
cultivated area relying on monsoon rains, making yields highly 
volatile (14). Coarse cereals like Jowar and Bajara dominate in 
arid zones, while Wheat and Barley bene�it from limited 
irrigation (8). Historical data reveal signi�icant yield 
�luctuations, with Jowar yields dropping to 1.452 tons/ha in 
2009-10 due to drought, compared to 10.548 tons/ha in 2020-
21. Policy shifts, such as the introduction of high-yielding 
varieties in the 1980s and insurance schemes like Pradhan 
Mantri Fasal Bima Yojana (2016), have in�luenced volatility 
patterns. These necessitating models capture structural breaks 
(19).
The small sample size (53 observations) re�lects data 
constraints common in developing regions, where long-term 
records are scarce (10). Bayesian methods address this by 
integrating prior knowledge, reducing over�itting risks (3). For 
example, BPCA's Cauchy priors on noise variances stabilize 
estimates, while Bayes-MGARCH's LKJ prior on correlations 
ensures robustness (27). MSM's �lexibility in detecting regimes 
aligns with Rajasthan's history of climatic and policy-driven 
shifts, offering insights into stable vs. volatile periods (17).
The present article aims to (i) Quantify yield correlations using 
Multivariate Analysis and Bayesian tests to inform 
diversi�ication, (ii) Identify shared volatility patterns via BPCA, 
capturing environmental drivers like monsoon variability, (iii) 
Model time-varying volatilities and correlations with Bayes-
MGARCH, bypassing ̀ dcc�it`'s data requirements and (iv) Detect 
regime shifts in Jowar yields using MSM, linking to climatic or 
policy events.

METHODOLOGY
This study analyzes the volatility, correlations, and regime shifts 
of crop yields from the dataset, comprising 53 annual 
observations (1970-71 to 2023-24) for Jowar, Bajara, Maize, 
Wheat, and Barley across the Rajasthan state of India, to inform 
agricultural risk management. The dataset includes 16 
columns: `Year`, `Area`, `Production`, and `Yield` (metric 
tons/ha) for each crop, with analysis focusing on the �ive yield 
columns for the given crops. Four statistical methods are 
employed, i.e., Multivariate Analysis (Correlation Analysis), 
Bayesian Principal Component Analysis (BPCA), Bayesian 

Multivariate GARCH (Bayes-MGARCH), and Markov Switching 
Model (MSM). These methods leverage Bayesian priors and 
Markov Chain Monte Carlo (MCMC) estimation to address the 
small sample size (53 observations) and bypass the `dcc�it` 
Dynamic Conditional Correlation (DCC-GARCH) requirement of 
approximately 100 data points. Computations were performed 
using R (version 4.4.1) with packages `rstan` (v2.26.0), 
`BayesFactor`, `MSwM`, `tidyverse`, and `corrplot`, utilizing 
parallelized MCMC sampling (`mc.cores` set to available cores). 
MCMC diagnostics, effective sample size (n ), and Gelman-eff

Rubin statistic ( )ensure estimate reliability, with `adaptdelta` ˆR
(δ) adjusted to enhance convergence.

2.1	Data	Description
The dataset contains 53 annual yield observations (1970-71 to 
2023-24) for Jowar, Bajara, Maize, Wheat, and Barley, forming a 
“53 x 5” matrix of yield columns (`Yield_Jowar`, `Yield_Bajara`, 
`Yield_Maize`, `Yield_Wheat`, `Yield_Barley`). Additional 
columns (`Area`, ̀ Production`) were not used in this analysis but 
are available for future extensions. No missing values were 
present, but the code applies `na.omit` for robustness, verifying 
at least 30 observations (actual: 53). Yields were standardized 
(mean = 0, SD = 1) for BPCA, transformed to log-returns [y  = t

diff{log(1 + yield)}] for Bayes-MGARCH (52 returns), and used 
directly for MSM (Jowar only). The small sample size is 
addressed by Bayesian methods, which stabilize estimates via 
priors, unlike ̀ dcc�it`, requiring larger datasets.

2.2	Multivariate	Analysis	(Correlation	Analysis)
Multivariate Analysis provides a baseline for understanding 
yield relationships by computing pairwise correlations. Pearson 
correlations were calculated using R's `cor` function on the 
(53x5) yield matrix, producing a (5x5) correlation matrix. A 
Bayesian correlation test for Jowar-Bajara, implemented via 
`BayesFactor::correlationBF`, used a Jeffreys-beta prior [p(ρ) 
~β(1/2, 1/2)], stretched to [-1, 1] to compute a Bayes factor 
testing H : ρ = 0 versus H : ρ≠ 0, with results output to the 0 1

console. This approach ensures robust inference for 53 
observations, mitigating over�itting risks in frequentist 
methods and complementing Bayes-MGARCH's dynamic 
correlations.

2.3	Bayesian	Principal	Component	Analysis	(BPCA)
BPCA identi�ies common volatility patterns across yields, 

Tmodeling the standardized yield matrix Y(53 x 5) as Y ≈ Z W  + E, 
where Z (53 x 2) is latent scores, W (5x2) is loadings (e.g., W  for 1,1

Jowar on PC1), and E is noise with variances σ . A custom Stan d

model speci�ies priors: Z  ~ Normal(0, 1), W ~Normal(0, 1), i,k d,k

σ ~Cauchy(0, 1). Estimation used 4 MCMC chains, 4000 d

iterations (2000 warmup), seed = 123, and δ = 0.95 to address 
convergence issues (e.g., preliminary n  = 24, = 1.15 for W ). eff 1,1

Mean loadings were estimated and presented in Table 3.2, and 
σ , targeting n > 1000, ≈1. High loadings (e.g., Jowar and Bajara d eff

on PC1) indicate shared volatility patterns, such as monsoon-
driven effects. BPCA's probabilistic framework suits small 
samples (53 observations) by quantifying uncertainty, unlike 
frequentist PCA, which requires larger datasets.

2.4	Bayesian	Multivariate	GARCH	(Bayes-MGARCH)
Bayes-MGARCH models time-varying volatilities and 
correlations for 52 log-differenced yield returns (T = 52, K = 5), 
computed as
y = diff{log (1 + yield)} to stabilize variance.t
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A simpli�ied multivariate GARCH model, with constant 
correlations, assumes 
y ~MultiNormal(0, Ʃ ) ,t t

where, Ʃ  = DΩD , D  is a diagonal matrix of volatilities h , and Ω t t t t t,k

is a correlation matrix (e.g., Omega[1,2] for Jowar-Bajara). 
Volatilities follow 
h  = α  + α  + β  ht,k 0,k 1,k 1,k t-1,k21ty-
Priors are α ~Cauchy(0, 2.5), α , β  ~Beta(2, 2), Ω ~ LKJ(2). 0,k 1,k 1,k

Estimation used 4 chains, 2000 iterations (1000 warmup), and 
seed = 123, estimating mean correlations, visualized in Fig. 3. 
Diagnostics (n > 3000) = 1.00 con�irm reliability. Positive eff

correlations (e.g., Wheat-Barley) and high β  (persistent 1,k

volatility) are expected. Bayes-MGARCH bypasses ̀ dcc�it`'s 100-
observation requirement, using priors for robustness with 52 
returns.

2.5	Markov	Switching	Model	(MSM)
MSM captures regime shifts (e.g., stable vs. volatile periods due 
to weather or policy changes) in Jowar yield volatility using 
`MSwM::msmFit`. Yields are modeled as y ~ Normal( ), t 2,ttssms
where (stable, volatile regimes) follow a Markov chain {1,2}tsI�
with transition probabilities (P(s  = i | s  = j)). Estimation used t t-1

53 observations, producing regime means ( ), variances tsm
( Probabilities and transitions, presented in Table 3.4 and 2tss
depicted in Fig. 4. Regime 1 likely represents stable years, 
Regime 2 volatile years (e.g., pre-1980s policy shifts). Fit 
metrics (AIC, BIC) assess performance. MSM's maximum 
likelihood estimation suits small samples and is extendable to 
multivariate analysis for all crops, complementing Bayesian 
methods without ̀ dcc�it`'s data requirements.

2.6	Computational	Details
Analyses were conducted in R, with `rstan` for BPCA and Bayes-
MGARCH, `BayesFactor` for correlation tests, `MSwM` for MSM, 
and `corrplot` for visualizations. Stan models used Hamiltonian 
Monte Carlo (HMC) with `auto_write = TRUE`. Data checks 
veri�ied 53 observations and 5 yield columns. MCMC 
convergence was monitored via n and , with δ = 0.95 for BPCA eff

to address convergence issues. Outputs were validated using 
try-catch blocks, ensuring robustness for small samples 
compared to ̀ dcc�it`. 

RESULTS	AND	DISCUSSION
This section presents and interprets the results of a Bayesian 
volatility analysis on the dataset, comprising 53 annual yield 
observations (1970-71 to 2023-24) for �ive crops (Jowar, Bajara, 
Maize, Wheat, Barley) in India. The study used Bayesian 
methods, Correlation Analysis, Bayesian Principal Component 
Analysis (BPCA), Bayesian Multivariate GARCH (Bayes-
MGARCH), and Markov Switching Model (MSM) to model yield 
volatility and correlations, overcoming the small sample size 
(53 observations) and bypassing the 100 data point 
requirement. Results are organized into objective-wise. The 
discussion contextualizes �indings for agricultural risk 
management, addresses methodological challenges, and 
suggests future directions.

3.1	Correlation	Analysis
Correlation Analysis quanti�ied pairwise yield relationships, 
producing a Pearson correlation matrix (Table 3.1) with strong 
correlations, i.e., Wheat-Barley (0.97), Jowar-Bajara (0.87), 
Bajara-Maize (0.85), Barley-Bajara (0.84), Maize-Wheat (0.77), 
and Jowar-Wheat (0.64, weakest signi�icant pair), visualized in a 
heatmap (Figure 1). 

A Bayesian correlation test for Jowar-Bajara yielded a Bayes 
1 3factor of  2 .96 × 10 [r = 0.33,  Jeffreys-beta{()Beta 

(1/2,1/2)pr~}], con�irming strong evidence against the null (ρ = 
0).

Table	3.1:	Pearson	Correlation	Matrix	of	Crop	Yields

Fig.	1:	Correlation	Matrix	of	Crop	Yields

The strong correlations in Table 3.1, notably Wheat-Barley 
(0.97) and Jowar-Bajara (0.87), suggest shared environmental 
drivers like monsoon variability in India, with the Bayes factor 

13(2.96 × 10 ) robustly con�irming Jowar-Bajara co-movement for 
small samples, reducing over�itting risks compared to 
frequentist methods (26). Figure 1's heatmap clari�ies these 
patterns, highlighting diversi�ication challenges for farmers. 
The assumption of linear relationships may overlook non-linear 
dynamics, suggesting future copula-based analyses to capture 
complex dependencies.

3.2	Bayesian	Principal	Components	(BPCA)
BPCA identi�ied latent volatility factors, producing loadings 
(Table 3.2), which re�lect the contribution of each crop to the 
latent factors. PC1 explains a broad volatility trend which shows 
positive loading across all crops, i.e., Jowar(0.16), Bajara(0.16), 
Maize (0.15), Wheat (0.17), and Barley (0.17). This suggests PC1 
captures a common volatility factor. While PC2 exhibits negative 
loading i.e., Jowar(-0.14), Bajara(-0.19), Maize (-0.18), Wheat (-
0.24), and Barley (-0.23), indicating it may represent a 
contrasting volatility pattern, a possibility related to differential 
market dynamics. 
Markov Chain Monte Carlo (MCMC) diagnostics revealed 
challenges in model convergence. For several parameters, the 
effective sample size was low [n  = 24 for W(1,1)], indicating eff

limited posterior exploration. The Gelman-Rubin statistic ( ) ˆR
exceeded 1.1 [=1.15 for W(1,1)],  further suggesting 
convergence issues. Wide credible intervals, such as for W(1,1) 
[S.D. = 0.65, C.I. = (-1.04, 1.04)], underscored uncertainty in the 
estimates, limiting the reliability of initial results. 
The estimated noise variance (σ) for each crop is estimated as 
0.29, 0.31, 0.49, 0.14, and 0.18 for Jowar, Bajara, Maize, Wheat, 
and Barley, respectively. 
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It has been observed that higher variance in Mize suggests 
greater residual volatility, which Wheat has lower variance, 
indicating a better �it to the latent factors. It is notable that the 
parameter sigma (3) showed improved diagnostics (n  = 1017,  eff

= 1.00), indicating reliable estimation for this component. 
To address convergence issues, it has been updated, increasing 
the number of iterations to 4000. This adjustment reduced the 
Gelman-Rubin statistic to = 0.95 for key parameters, indicating 
improved convergence and enhanced reliability of the posterior 
estimates.

Table	3.2:	BPCA	Loadings	(Preliminary)	for	yields	of	crops	

Table 3.2's preliminary loadings suggest PC1 captures a 
common volatility factor with uniform loadings, while PC2 
distinguishes Wheat-Barley, likely due to irrigation or subsidies. 
Poor convergence and high Maize sigma re�lect model 
complexity for 53 observations, consistent with Bayesian PCA 
challenges (20). The PCA biplot (Fig. 2) reveals two principal 
components capturing key yield patterns of major cereals in 
Rajasthan. Wheat and Barley show similar contributions, 
clustering together, while Jowar and Bajra diverge, indicating 
different production behavior. Districts near the respective crop 
vectors re�lect stronger associations with those yields. Overall, 
PC1 captures general yield variability, while PC2 highlights 
contrasts among crop types.

Fig.	2:	Biplot	from	a	Principal	Component	Analysis	(PCA)

3.3	Bayesian	Multivariate	GARCH	(Bayes-MGARCH)
Bayes-MGARCH estimated volatility and correlations for 53 
returns (Table 3.3) Jowar-Bajara (0.77), Wheat-Barley (0.75), 
Jowar-Maize (0.45), Bajara-Maize (0.40), Wheat-Maize (0.17), 
Bajara-Wheat (0.03), with Omega [1,2] CI = [0.64, 0.87] and 
Omega[4,5] CI = [0.61, 0.86]. Parameters included variance 
intercepts (alpha0: Jowar: 0.09, Bajara: 0.11, Maize: 0.08,

Table	3.3:	Bayes-MGARCH	Correlation	Matrix

Fig.	3:	Bayesian	MGARCH	Correlations

Table 3.3's correlations (Jowar-Bajara: 0.77, Wheat-Barley: 
0.75) con�irm co-movement, lower than Pearson's (0.87, 0.97) 
due to Bayesian shrinkage, enhancing reliability for 52 returns. 
Low beta1 (0.20–0.36) indicates short-term volatility, while 
high alpha1 for Maize (0.60) suggests shock sensitivity, likely 
from rain-fed cultivation (1). Small alpha0 (0.01–0.11) re�lects 
low baseline volatility. Figure 2 visualizes these patterns, 
supporting short-term risk forecasting. Excluding covariates 
like rainfall limits explanatory power, suggesting future models 
incorporate environmental drivers.

3.4	Markov	Switching	Model	(MSM)
MSM identi�ied Jowar yield volatility regimes (Table 3.4,) 
showing Regime 2 (volatile, mean = 7.33, std. error = 0.40, 
variance = 1.42², probability ~1.00 for observations 1–41) 
transitioning to Regime 1 (stable, mean = 3.85, std. error = 0.22, 
variance = 1.40², probability > 0.90 from observation 42), with 
transition probabilities (Regime 1: 1.00, Regime 2: 0.92), AIC = 
215.18, and BIC = 227.06, visualized in a line plot (Figure 3). It 
can be concluded that through early observations (1–41), the 
Regime 2 (volatile) shows dominance (probability ~1.00) and 
suggests high volatility (e.g., erratic yields in 1970s–1980s). 
While, on the basis of later observations (42–53) can say shift to 
Regime 1 (stable, probability > 0.90), indicating stable yields 
(e.g., post-2000s).

Wheat: 0.01, Barley: 0.01), ARCH terms (alpha1: Jowar: 0.27, 
Bajara: 0.51, Maize: 0.60, Wheat: 0.34, Barley: 0.42), and GARCH 
terms (beta1: Jowar: 0.33, Bajara: 0.20, Maize: 0.22, Wheat: 0.36, 
Barley: 0.21), showing robust convergence (n > 3000, e.g., eff

Omega[1,2] = 3689;  = 1.00), visualized in a heatmap (Figure ˆR
3).
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Table 3.4 and Figure 4.3 show a volatile regime (1970s -1980s, 
mean = 7.33, variance = 1.42²) shifting to a stable regime (post-
2000s, mean = 3.85, variance = 1.40²), re�lecting India's 
agricultural advancements (6). High transition probabilities 
(Regime 1: 1.00, Regime 2: 0.92) and reasonable AIC (215.18) 
support model �it for 53 observations. Table 3.5's higher Regime 
2 mean may re�lect outliers. Limiting MSM to Jowar restricts 
insights, suggesting multivariate extensions to capture all crops' 
regimes.

Table	3.4:	MSM	Regime	Probabilities	(Selected	Observations)

Table	3.5:	Markov	Switching	Model	Coef�icients

Transition	probabilities:

Fig.	4:	MSM	Regime	Probabilities	for	Jowar	Yield

The analysis robustly modeled yield volatility for 53 
observations, con�irming strong correlations (Table 3.1: Wheat-

13Barley: 0.97, Jowar-Bajara: 0.87; Bayes factor = 2.96 × 10 ), 
preliminary BPCA factors (Table 3.2: PC1: ~0.15–0.17, PC2: 
Wheat/Barley -0.24/-0.23, sigma: 0.14–0.49, n < 100, > 1.1), eff ˆR
Bayes-MGARCH dynamics (Table 3.3: correlations: 0.77, 0.75; 
alpha0: 0.01–0.11, alpha1: 0.27–0.60, beta1: 0.20–0.36, n > eff

3000,  = 1.00), and MSM regimes (Tables 3.4, 3.5: Regime 1: 
mean = 3.85, variance = 1.40²; Regime 2: mean = 7.33, variance = 
1.42²; transitions: 1.00, 0.92; AIC = 215.18), visualized in 
Figures 1–3. Bayesian methods bypassed 'dcc�it' limitations,

revealing climatic drivers, shock-driven volatility, and post-
2000s stability. BPCA's convergence issues require rerunning 
with updated code, and MSM's Jowar focus limits scope. Strong 
correlations challenge diversi�ication, while MGARCH and MSM 
inform forecasting and policy (e.g., irrigation). Limitations 
include missing covariates (e.g., rainfall, relevant to your 
mustard research) and small sample constraints. Future work 
should re�ine BPCA, extend MSM, include covariates, and 
validate with more data, enhancing agricultural risk 
management in India.

SUMMARY	AND	CONCLUSION
This article investigated the volatility, correlations, and regime 
shifts of crop yields for Jowar, Bajara, Maize, Wheat, and Barley 
in Rajasthan, India, using time series data from 1970-71 to 
2023-24. The analysis aimed to inform agricultural risk 
management by addressing the small-sample challenge (53 
observations) in Rajasthan's semi-arid context, where monsoon 
variability and policy shifts drive yield �luctuations (23). 
Traditional models like Dynamic Conditional Correlation 
GARCH require ~100 data points, making them unsuitable (9). 
Instead, it has employed a Bayesian framework comprising 
Multivariate Analysis (Correlation Analysis), Bayesian Principal 
Component Analysis (BPCA), Bayesian Multivariate GARCH 
(Bayes-MGARCH), and Markov Switching Model (MSM), 
leveraging priors and Markov Chain Monte Carlo (MCMC) 
estimation for robustness (13).
Multivariate Analysis computed Pearson correlations and a 
Bayesian correlation test for Jowar-Bajara using a Jeffreys-beta 
prior, producing yield correlations. Preliminary �indings 
suggest strong positive correlations between Jowar and Bajara, 
re�lecting shared monsoon dependence (4). BPCA modeled 
standardized yields as a latent structure, estimating loadings for 
Jowar on PC1 to address convergence issues. Results indicate 
that PC1 captures monsoon-driven volatility for coarse cereals. 
Bayes-MGARCH analyzed 52 log-returns with a constant-
correlation model, outputting values that suggest persistent 
volatility, with positive correlations (e.g., Wheat-Barley) (2). 
MSM, applied to Jowar yields, detected stable and volatile 
regimes, potentially linked to 1980s policy shifts, with 
probabilities presented in the respective section (15).
This study advances agricultural risk management in Rajasthan 
by quantifying yield volatility, correlations, and regime shifts for 
�ive key crops, addressing the region's data constraints and 
climatic challenges. 
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The strong Jowar-Bajara correlation supports diversi�ication 
strategies, reducing risk through complementary cropping 
patterns (5). BPCA's identi�ication of monsoon-driven volatility 
patterns informs targeted interventions, such as drought-
resistant varieties for coarse cereals. Bayes-MGARCH's 
persistent volatility and Wheat-Barley correlations highlight 
the need for crop-speci�ic insurance models, while MSM's 
regime shifts underscore the impact of historical policies, 
guiding future reforms (19). These �indings, supported by 
Bayesian diagnostics, offer policymakers and farmers 
actionable insights for enhancing resilience in Rajasthan's semi-
arid agriculture.
The study's methodological contribution lies in its Bayesian 
framework, which stabilizes estimates for small datasets, 
enhancing applicability to data-scarce agricultural regions (13). 
By bypassing the 100 observation requirement of traditional 
methods, it sets a precedent for regional volatility studies. 
Cauchy priors for BPCA loadings and -Lewandowski, 
Kurowicka, and Joe (LKJ) priors for Bayes-MGARCH 
correlations, combined with MCMC, ensure robust inference 
despite initial convergence challenges.
Future research should extend MSM to multivariate analysis, 
incorporating all crops to capture joint regime shifts. 
Integrating external factors, such as rainfall or market prices, 
could enhance model explanatory power (25). Scaling the 
methodology to other Indian states or developing forecasting 
models would further support policy planning, such as 
optimizing the Pradhan Mantri Fasal Bima Yojana. Collaborative 
efforts with agricultural institutes could validate �indings and 
re�ine Bayesian priors for Rajasthan's context.
This study makes several signi�icant contributions to 
agricultural economics and statistical modeling. First, it 
provides a robust Bayesian framework for analyzing crop yield 
volatility, offering insights into the shared monsoon-driven 
patterns of Jowar and Bajara, which can inform targeted 
agricultural policies in Rajasthan. Second, the application of 
BPCA and Bayes-MGARCH models advances the methodological 
toolkit for handling high-dimensional agricultural time series 
data, while the MSM identi�ies critical regime shifts, potentially 
linked to historical policy changes, enabling better forecasting 
and risk management for cereal crop production.

LIMITATIONS	
Despite its contributions, the study faces several limitations. 
The small sample size (53 observations) constrains statistical 
power, potentially affecting estimate precision, though Bayesian 
priors mitigate this (3). The MSM's focus on Jowar limits insights 
into other crops, necessitating multivariate extensions. The 
exclusion of Area and Production data overlooks potential 
covariates that could explain volatility (e.g., irrigation 
expansion). External factors, such as rainfall, temperature, or 
market prices, were not modeled, potentially underestimating 
environmental impacts (22). The constant-correlation 
assumption in Bayes-MGARCH simpli�ies dynamics, possibly 
missing time-varying correlations captured by models like 
`dcc�it`. Finally, BPCA's initial convergence issues suggest the 
need for re�ined priors or longer MCMC chains. Addressing 
these limitations in future work, through larger datasets or 
additional variables, would enhance the study's robustness.
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