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( ABSTRACT

Cereals play an important role in the human diet in India. However, the yield rate varies across the country. Rajasthan, which is a
major contributor of the important cereal crops, i.e.,, Jowar, Bajara, Maize, Wheat, and Barley. The present paper has been an attempt
to analyze the volatility, correlations, and regime shifts of crop yields from time series data from 1970-71 to 2023-24 on yields of
Jowar, Bajara, Maize, Wheat, and Barley across the Rajasthan state of India. The Multivariate Analysis, Bayesian Principal
Component Analysis (BPCA), Bayesian Multivariate GARCH, and Markov Switching Model (MSM) have been used to analyze and
quantify yield correlations, identify shared volatility patterns, time-varying volatilities, and detect regime shifts. The data has been
analyzed and production of graphs using the R software, which is a programming language specifically designed for statistical
computing and graphics. The process of data collection was constrained by incomplete historical records and inconsistencies in yield
reporting, which posed significant challenges for model convergence and the reliability of parameter estimation. Despite these
issues, the findings reveal strong positive correlations between Jowar and Bajara, reflecting shared monsoon dependence. BPCA
modeled standardized yields as a latent structure, estimating loadings for Jowar with 4 chains, 4000 iterations, and 6 (0.95) to
address convergence issues. Results also indicate that PC1 captures monsoon-driven volatility for coarse cereals. Bayes-MGARCH
analyzed 52 log-returns with a constant-correlation model, outputting values suggesting persistent volatility and positive
correlations. Applied to Jowar yields, MSM detected stable and volatile regimes, potentially linked to 1980s policy shifts, with
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probabilities.
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INTRODUCTION

Agriculture in Rajasthan, India, is a cornerstone of livelihoods,
yet it faces persistent challenges due to the state's semi-arid
climate, erratic monsoon rainfall, and frequent droughts (23).
Crops such as Jowar, Bajara, Maize, Wheat, and Barley, critical to
food security and farmer income, exhibit significant yield
volatility driven by environmental factors and policy shifts, such
as the Green Revolution's impact in the 1980s (18).
Understanding this volatility is essential for developing robust
risk management strategies, including crop insurance and
diversification, to mitigate economic losses and enhance
resilience (5). This study analyzes 53 annual yield observations
(1970-71 to 2023-24), focusing on these five crops in Rajasthan
to model volatility, correlations, and regime shifts, thereby
informing agricultural policy and practice.

Yield volatility poses a significant challenge in rain-fed regions
like Rajasthan, where monsoon variability accounts for
substantial productionrisks (11).
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Earlier studies have shown that crop yields in semi-arid India
are highly sensitive to rainfall patterns, with droughts
exacerbating income uncertainty for farmers (22). For instance,
Rajasthan experienced severe droughts in 1987, 2002, and
2015, which disrupted the yields of coarse cereals like Jowar
and Bajara (25). Moreover, policy interventions, such as
subsidies and irrigation expansion post-1980s, have introduced
structural changes in yield dynamics, necessitating models that
capture regime shifts (24). Traditional econometric
approaches, such as Pearson correlations or frequentist
Principal Component Analysis (PCA), often fail to account for
uncertainty in small datasets, leading to unreliable estimates
(D).

The dataset, with only 53 observations, exemplifies the small-
sample challenge prevalent in regional agricultural studies.
Conventional volatility models, like Dynamic Conditional
Correlation GARCH, require approximately 100 data points for
stable estimation, rendering them unsuitable (9). Bayesian
methods offer a solution by incorporating prior distributions to
stabilize estimates, making them ideal for limited data (13). This
study employs a Bayesian framework comprising Multivariate
Analysis (Correlation Analysis), Bayesian Principal Component
Analysis (BPCA), Bayesian Multivariate GARCH (Bayes-
MGARCH), and Markov Switching Model (MSM).
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These methods leverage Markov Chain Monte Carlo (MCMC)
estimation to model complex yield dynamics, addressing the
small-sample constraint while bypassing "dccfit™'s limitations.
Bayesian approaches have gained traction in agricultural
economics for their ability to handle uncertainty and small
datasets (21). BPCA, for instance, models yields as a low-
dimensional latent structure, estimating loadings with credible
intervals, unlike frequentist PCA's point estimates (28). This is
particularly relevant for Rajasthan, where shared volatility
patterns, driven by monsoon cycles, can be captured as principal
components (4). The Bayesian correlation test, using a Jeffreys-
beta prior, provides robust evidence of co-movements (e.g.,
Jowar-Bajara), critical for diversification strategies (16).
Bayes-MGARCH models time-varying volatilities and
correlations using log-returns, offering a flexible alternative to
“decfit’ (2). Its constant-correlation structure reduces
parameter complexity, ensuring stability with 52 returns (29).
MSM, applied to Jowar yields, detects regime shifts (e.g., stable
vs. volatile periods), potentially linked to policy changes or
drought events (15). These methods are supported by MCMC
diagnostics, such as effective sample size and Gelman-Rubin
statistic, with § adjustments to ensure convergence (12).
Rajasthan's agriculture is predominantly rain-fed, with 70% of
cultivated area relying on monsoon rains, making yields highly
volatile (14). Coarse cereals like Jowar and Bajara dominate in
arid zones, while Wheat and Barley benefit from limited
irrigation (8). Historical data reveal significant yield
fluctuations, with Jowar yields dropping to 1.452 tons/ha in
2009-10 due to drought, compared to 10.548 tons/ha in 2020-
21. Policy shifts, such as the introduction of high-yielding
varieties in the 1980s and insurance schemes like Pradhan
Mantri Fasal Bima Yojana (2016), have influenced volatility
patterns. These necessitating models capture structural breaks
(19).

The small sample size (53 observations) reflects data
constraints common in developing regions, where long-term
records are scarce (10). Bayesian methods address this by
integrating prior knowledge, reducing overfitting risks (3). For
example, BPCA's Cauchy priors on noise variances stabilize
estimates, while Bayes-MGARCH's LK] prior on correlations
ensures robustness (27). MSM's flexibility in detecting regimes
aligns with Rajasthan's history of climatic and policy-driven
shifts, offering insights into stable vs. volatile periods (17).

The present article aims to (i) Quantify yield correlations using
Multivariate Analysis and Bayesian tests to inform
diversification, (ii) Identify shared volatility patterns via BPCA,
capturing environmental drivers like monsoon variability, (iii)
Model time-varying volatilities and correlations with Bayes-
MGARCH, bypassing “dccfit™'s data requirements and (iv) Detect
regime shifts in Jowar yields using MSM, linking to climatic or
policy events.

METHODOLOGY

This study analyzes the volatility, correlations, and regime shifts
of crop yields from the dataset, comprising 53 annual
observations (1970-71 to 2023-24) for Jowar, Bajara, Maize,
Wheat, and Barley across the Rajasthan state of India, to inform
agricultural risk management. The dataset includes 16
columns: “Year’, “Area’, ‘Production’, and ‘Yield" (metric
tons/ha) for each crop, with analysis focusing on the five yield
columns for the given crops. Four statistical methods are
employed, i.e.,, Multivariate Analysis (Correlation Analysis),
Bayesian Principal Component Analysis (BPCA), Bayesian

Multivariate GARCH (Bayes-MGARCH), and Markov Switching
Model (MSM). These methods leverage Bayesian priors and
Markov Chain Monte Carlo (MCMC) estimation to address the
small sample size (53 observations) and bypass the “dccfit’
Dynamic Conditional Correlation (DCC-GARCH) requirement of
approximately 100 data points. Computations were performed
using R (version 4.4.1) with packages ‘rstan’ (v2.26.0),
‘BayesFactor’, "MSwM?", ‘tidyverse’, and “corrplot’, utilizing
parallelized MCMC sampling (‘mc.cores’ set to available cores).
MCMC diagnostics, effective sample size (n,;), and Gelman-
Rubin statistic ("R)ensure estimate reliability, with "adaptdelta’
(6) adjusted to enhance convergence.

2.1 Data Description

The dataset contains 53 annual yield observations (1970-71 to
2023-24) for Jowar, Bajara, Maize, Wheat, and Barley, forming a
“53 x 5” matrix of yield columns ('Yield_Jowar", "Yield_Bajara’,
‘Yield_Maize®, “Yield_Wheat’, 'Yield_Barley'). Additional
columns (“Area’, 'Production’) were not used in this analysis but
are available for future extensions. No missing values were
present, but the code applies ‘'na.omit” for robustness, verifying
at least 30 observations (actual: 53). Yields were standardized
(mean = 0, SD = 1) for BPCA, transformed to log-returns [y, =
diff{log(1 + yield)}] for Bayes-MGARCH (52 returns), and used
directly for MSM (Jowar only). The small sample size is
addressed by Bayesian methods, which stabilize estimates via
priors, unlike “dccfit’, requiring larger datasets.

2.2 Multivariate Analysis (Correlation Analysis)

Multivariate Analysis provides a baseline for understanding
yield relationships by computing pairwise correlations. Pearson
correlations were calculated using R's “cor’ function on the
(53x5) yield matrix, producing a (5x5) correlation matrix. A
Bayesian correlation test for Jowar-Bajara, implemented via
"BayesFactor::correlationBF", used a Jeffreys-beta prior [p(p)
~B(1/2, 1/2)], stretched to [-1, 1] to compute a Bayes factor
testing H,: p = 0 versus H,: p# 0, with results output to the
console. This approach ensures robust inference for 53
observations, mitigating overfitting risks in frequentist
methods and complementing Bayes-MGARCH's dynamic
correlations.

2.3 Bayesian Principal Component Analysis (BPCA)

BPCA identifies common volatility patterns across yields,
modeling the standardized yield matrix Y(53x5)as Y~ZW' +E,
whereZ (53 x2) islatentscores, W (5x2) isloadings (e.g., W, , for
Jowar on PC1), and E is noise with variances o,. A custom Stan
model specifies priors: Z,, ~ Normal(0, 1), W,,~Normal(0, 1),
o,~Cauchy(0, 1). Estimation used 4 MCMC chains, 4000
iterations (2000 warmup), seed = 123, and & = 0.95 to address
convergence issues (e.g.,, preliminary n., = 24, = 1.15 for W,,).
Mean loadings were estimated and presented in Table 3.2, and
o, targeting n,> 1000, ~1. High loadings (e.g., Jowar and Bajara
on PC1) indicate shared volatility patterns, such as monsoon-
driven effects. BPCA's probabilistic framework suits small
samples (53 observations) by quantifying uncertainty, unlike
frequentist PCA, which requires larger datasets.

2.4 Bayesian Multivariate GARCH (Bayes-MGARCH)
Bayes-MGARCH models time-varying volatilities and
correlations for 52 log-differenced yield returns (T = 52, K = 5),
computed as

y=diff{log (1 +yield)} to stabilize variance.
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A simplified multivariate GARCH model, with constant
correlations, assumes

y,~MultiNormal(0, %),

where, X, = D.OD, D, is a diagonal matrix of volatilities h,,, and Q
isacorrelation matrix (e.g., Omega[1,2] for Jowar-Bajara).
Volatilities follow

h = oy, + o, 21ey-+ B, h

Priorsare o, ~Cauchy(0, 2.5), a,,, B, ~Beta(2, 2), 2 ~ LK](2).
Estimation used 4 chains, 2000 iterations (1000 warmup), and
seed = 123, estimating mean correlations, visualized in Fig. 3.
Diagnostics (n,> 3000) = 1.00 confirm reliability. Positive
correlations (e.g., Wheat-Barley) and high B,, (persistent
volatility) are expected. Bayes-MGARCH bypasses “dccfit™'s 100-
observation requirement, using priors for robustness with 52
returns.

2.5 Markov Switching Model (MSM)

MSM captures regime shifts (e.g., stable vs. volatile periods due
to weather or policy changes) in Jowar yield volatility using
"MSwM::msmFit'. Yields are modeled as y,~ Normal(2,ttssms),
where {1,2}tsI(stable, volatile regimes) follow a Markov chain
with transition probabilities (P(s, =1 | s., =j)). Estimation used
53 observations, producing regime means (tsm), variances
(2tssProbabilities and transitions, presented in Table 3.4 and
depicted in Fig. 4. Regime 1 likely represents stable years,
Regime 2 volatile years (e.g., pre-1980s policy shifts). Fit
metrics (AIC, BIC) assess performance. MSM's maximum
likelihood estimation suits small samples and is extendable to
multivariate analysis for all crops, complementing Bayesian
methods without "dccfit's datarequirements.

2.6 Computational Details

Analyses were conducted in R, with ‘rstan’ for BPCA and Bayes-
MGARCH, "BayesFactor for correlation tests, MSwM" for MSM,
and “corrplot’ for visualizations. Stan models used Hamiltonian
Monte Carlo (HMC) with “auto_write = TRUE". Data checks
verified 53 observations and 5 yield columns. MCMC
convergence was monitored via n;and , with § = 0.95 for BPCA
to address convergence issues. Outputs were validated using
try-catch blocks, ensuring robustness for small samples
compared to “dccfit".

RESULTS AND DISCUSSION

This section presents and interprets the results of a Bayesian
volatility analysis on the dataset, comprising 53 annual yield
observations (1970-71 to 2023-24) for five crops (Jowar, Bajara,
Maize, Wheat, Barley) in India. The study used Bayesian
methods, Correlation Analysis, Bayesian Principal Component
Analysis (BPCA), Bayesian Multivariate GARCH (Bayes-
MGARCH), and Markov Switching Model (MSM) to model yield
volatility and correlations, overcoming the small sample size
(53 observations) and bypassing the 100 data point
requirement. Results are organized into objective-wise. The
discussion contextualizes findings for agricultural risk
management, addresses methodological challenges, and
suggests future directions.

3.1 Correlation Analysis

Correlation Analysis quantified pairwise yield relationships,
producing a Pearson correlation matrix (Table 3.1) with strong
correlations, i.e., Wheat-Barley (0.97), Jowar-Bajara (0.87),
Bajara-Maize (0.85), Barley-Bajara (0.84), Maize-Wheat (0.77),
and Jowar-Wheat (0.64, weakest significant pair), visualized ina
heatmap (Figure 1).

A Bayesian correlation test for Jowar-Bajara yielded a Bayes
factor of 2.96 x 10"[r = 0.33, Jeffreys-beta{()Beta
(1/2,1/2)pr~}], confirming strong evidence against the null (p =
0).

Table 3.1: Pearson Correlation Matrix of Crop Yields

Jowar Bajara Maize Wheat Barley
Jowar 1 0.870113 0.799675 0.63858 0.683018
Bajara | 0.870113 1 0.845267 0.820514 0.842418
Maize 0.799675 | 0.845267 1 0.771313 0.795289
Wheat 0.63858 0.820514 0.771313 1 0.970375
Barley | 0.683018 | 0.842418 0.795289 0.970375 1

4
@

Yield_Jowar

Yield_Bajara

Yield_Maize

Yield_Wneat

Fig. 1: Correlation Matrix of Crop Yields

The strong correlations in Table 3.1, notably Wheat-Barley
(0.97) and Jowar-Bajara (0.87), suggest shared environmental
drivers like monsoon variability in India, with the Bayes factor
(2.96 x 10") robustly confirming Jowar-Bajara co-movement for
small samples, reducing overfitting risks compared to
frequentist methods (26). Figure 1's heatmap clarifies these
patterns, highlighting diversification challenges for farmers.
The assumption of linear relationships may overlook non-linear
dynamics, suggesting future copula-based analyses to capture
complex dependencies.

3.2 Bayesian Principal Components (BPCA)

BPCA identified latent volatility factors, producing loadings
(Table 3.2), which reflect the contribution of each crop to the
latent factors. PC1 explains a broad volatility trend which shows
positive loading across all crops, i.e., Jowar(0.16), Bajara(0.16),
Maize (0.15), Wheat (0.17),and Barley (0.17). This suggests PC1
captures a common volatility factor. While PC2 exhibits negative
loading i.e., Jowar(-0.14), Bajara(-0.19), Maize (-0.18), Wheat (-
0.24), and Barley (-0.23), indicating it may represent a
contrasting volatility pattern, a possibility related to differential
market dynamics.

Markov Chain Monte Carlo (MCMC) diagnostics revealed
challenges in model convergence. For several parameters, the
effective sample size was low [n,; = 24 for W(1,1)], indicating
limited posterior exploration. The Gelman-Rubin statistic ("R)
exceeded 1.1 [=1.15 for W(1,1)], further suggesting
convergence issues. Wide credible intervals, such as for W(1,1)
[S.D.=0.65, C.I. = (-1.04, 1.04)], underscored uncertainty in the
estimates, limiting the reliability of initial results.

The estimated noise variance (o) for each crop is estimated as
0.29, 0.31, 0.49, 0.14, and 0.18 for Jowar, Bajara, Maize, Wheat,
and Barley, respectively.
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It has been observed that higher variance in Mize suggests
greater residual volatility, which Wheat has lower variance,
indicating a better fit to the latent factors. It is notable that the
parameter sigma (3) showed improved diagnostics (n,;= 1017,
=1.00), indicating reliable estimation for this component.

To address convergence issues, it has been updated, increasing
the number of iterations to 4000. This adjustment reduced the
Gelman-Rubin statistic to = 0.95 for key parameters, indicating
improved convergence and enhanced reliability of the posterior

Wheat: 0.01, Barley: 0.01), ARCH terms (alphal: Jowar: 0.27,
Bajara: 0.51, Maize: 0.60, Wheat: 0.34, Barley: 0.42), and GARCH
terms (betal: Jowar: 0.33, Bajara: 0.20, Maize: 0.22, Wheat: 0.36,
Barley: 0.21), showing robust convergence (n,> 3000, e.g.,
Omega[1,2] = 3689; "R = 1.00), visualized in a heatmap (Figure
3).

Table 3.3: Bayes-MGARCH Correlation Matrix

estimates.

Table 3.2: BPCA Loadings (Preliminary) foryields of crops

Crops

PC1

pPC2

Jowar

Bajara

Maize

Wheat

Barley

Jowar

1

0.774659

0.445449

0.232631

0.225495

Bajara

0.774659

1

0.396145

0.028594

0.08035

Maize

0.445449

0.396145

1

0.168376

0.144882

Wheat

0.232631

0.028594

0.168376

1

0.752317

Barley

0.225495

0.08035

0.144882

0.752317

1

Jowar

0.15578

-0.13989

Bajara

0.164013

-0.18795

Maize

0.151279

-0.17529

Wheat

0.165495

-0.23685

Barley

0.16872

-0.23278

oL

DAYESIAI MBARLA LU EIaUUIS

Table 3.2's preliminary loadings suggest PC1 captures a
common volatility factor with uniform loadings, while PC2
distinguishes Wheat-Barley, likely due to irrigation or subsidies.
Poor convergence and high Maize sigma reflect model
complexity for 53 observations, consistent with Bayesian PCA
challenges (20). The PCA biplot (Fig. 2) reveals two principal
components capturing key yield patterns of major cereals in
Rajasthan. Wheat and Barley show similar contributions,
clustering together, while Jowar and Bajra diverge, indicating
different production behavior. Districts near the respective crop
vectors reflect stronger associations with those yields. Overall,
PC1 captures general yield variability, while PC2 highlights
contrasts among crop types.

5 0 5
l | l
14
g | 5 34 1 ?4 —
i Yield Jowags 38
= ' 2 3
2 - —
(o]
O
o < |
o
™
o Lo
e
i 33
| 40
S T T T T T T
04 03 02 01 00 01 02
PCA

Fig. 2: Biplot from a Principal Component Analysis (PCA)

3.3 Bayesian Multivariate GARCH (Bayes-MGARCH)

Bayes-MGARCH estimated volatility and correlations for 53
returns (Table 3.3) Jowar-Bajara (0.77), Wheat-Barley (0.75),
Jowar-Maize (0.45), Bajara-Maize (0.40), Wheat-Maize (0.17),
Bajara-Wheat (0.03), with Omega [1,2] CI = [0.64, 0.87] and
Omega[4,5] CI = [0.61, 0.86]. Parameters included variance
intercepts (alphaO: Jowar: 0.09, Bajara: 0.11, Maize: 0.08,

0.45 0.23 0.23

Fig. 3: Bayesian MGARCH Correlations

Table 3.3's correlations (Jowar-Bajara: 0.77, Wheat-Barley:
0.75) confirm co-movement, lower than Pearson's (0.87, 0.97)
due to Bayesian shrinkage, enhancing reliability for 52 returns.
Low betal (0.20-0.36) indicates short-term volatility, while
high alphal for Maize (0.60) suggests shock sensitivity, likely
from rain-fed cultivation (1). Small alpha0 (0.01-0.11) reflects
low baseline volatility. Figure 2 visualizes these patterns,
supporting short-term risk forecasting. Excluding covariates
like rainfall limits explanatory power, suggesting future models
incorporate environmental drivers.

3.4 Markov Switching Model (MSM)

MSM identified Jowar yield volatility regimes (Table 3.4,)
showing Regime 2 (volatile, mean = 7.33, std. error = 0.40,
variance = 1.42% probability ~1.00 for observations 1-41)
transitioning to Regime 1 (stable, mean = 3.85, std. error = 0.22,
variance = 1.40?, probability > 0.90 from observation 42), with
transition probabilities (Regime 1: 1.00, Regime 2: 0.92), AIC =
215.18, and BIC = 227.06, visualized in a line plot (Figure 3). It
can be concluded that through early observations (1-41), the
Regime 2 (volatile) shows dominance (probability ~1.00) and
suggests high volatility (e.g., erratic yields in 1970s-1980s).
While, on the basis of later observations (42-53) can say shift to
Regime 1 (stable, probability > 0.90), indicating stable yields
(e.g., post-2000s).
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Table 3.4: MSM Regime Probabilities (Selected Observations)

S.No. Regime 1 Regime 2 S.No. Regime 1 Regime 2 S.No. Regime 1 Regime 2
1 0 1 19 0 1 37 0 1
2 0 1 20 0 1 38 0 1
3 0 1 21 0 1 39 0.01 0.99
4 0 1 22 0 1 40 0.01 0.99
5 0 1 23 0 1 41 0.01 0.99
6 0 1 24 0 1 42 091 0.09
7 0 1 25 0 1 43 0.99 0.01
8 0 1 26 0 1 44 1 0
9 0 1 27 0 1 45 1 0
10 0 1 28 0 1 46 1 0
11 0 1 29 0 1 47 1 0
12 0 1 30 0 1 48 1 0
13 0 1 31 0 1 49 1 0
14 0 1 32 0 1 50 1 0
15 0 1 33 0 1 51 1 0
16 0 1 34 0 1 52 1 0
17 0 1 35 0 1 53 1 0
18 0 1 36 0 1

Table 3.5: Markov Switching Model Coefficients

Metric Regime 1 Regime 2
Intercept (mean yield) 3.85 7.32
Std. Error 0.22 0.40
Residual Std. Error 1.40 1.42
tvalue 17.344 18.32
Pr(>|t]) <2.2e716%*kx <2.2e°16%%%
Transition probabilities:
Regime 1 Regime 2
Regime 1 9.999933e-01 0.07735274
Regime 2 6.746755e00 0.92264726

Table 3.4 and Figure 4.3 show a volatile regime (1970s -1980s,
mean = 7.33, variance = 1.42?) shifting to a stable regime (post-
2000s, mean = 3.85, variance = 1.40%), reflecting India's
agricultural advancements (6). High transition probabilities
(Regime 1: 1.00, Regime 2: 0.92) and reasonable AIC (215.18)
support model fit for 53 observations. Table 3.5's higher Regime
2 mean may reflect outliers. Limiting MSM to Jowar restricts
insights, suggesting multivariate extensions to capture all crops'
regimes.

MSM Regime Probabilities for Jowar Yield

fﬁ; | H

Probability

ervation

O Regime 1 (Stable) O Regime 2 (Volatile)
Fig. 4: MSM Regime Probabilities for Jowar Yield

The analysis robustly modeled yield volatility for 53
observations, confirming strong correlations (Table 3.1: Wheat-
Barley: 0.97, Jowar-Bajara: 0.87; Bayes factor = 2.96 x 10%),
preliminary BPCA factors (Table 3.2: PC1: ~0.15-0.17, PC2:
Wheat/Barley -0.24/-0.23, sigma: 0.14-0.49, n < 100, "R> 1.1),
Bayes-MGARCH dynamics (Table 3.3: correlations: 0.77, 0.75;
alpha0: 0.01-0.11, alphal: 0.27-0.60, betal: 0.20-0.36, n,>
3000, = 1.00), and MSM regimes (Tables 3.4, 3.5: Regime 1:
mean = 3.85, variance = 1.40%; Regime 2: mean =7.33, variance =
1.422%; transitions: 1.00, 0.92; AIC = 215.18), visualized in
Figures 1-3. Bayesian methods bypassed 'dccfit’ limitations,

revealing climatic drivers, shock-driven volatility, and post-
2000s stability. BPCA's convergence issues require rerunning
with updated code, and MSM's Jowar focus limits scope. Strong
correlations challenge diversification, while MGARCH and MSM
inform forecasting and policy (e.g., irrigation). Limitations
include missing covariates (e.g., rainfall, relevant to your
mustard research) and small sample constraints. Future work
should refine BPCA, extend MSM, include covariates, and
validate with more data, enhancing agricultural risk
managementin India.

SUMMARY AND CONCLUSION

This article investigated the volatility, correlations, and regime
shifts of crop yields for Jowar, Bajara, Maize, Wheat, and Barley
in Rajasthan, India, using time series data from 1970-71 to
2023-24. The analysis aimed to inform agricultural risk
management by addressing the small-sample challenge (53
observations) in Rajasthan's semi-arid context, where monsoon
variability and policy shifts drive yield fluctuations (23).
Traditional models like Dynamic Conditional Correlation
GARCH require ~100 data points, making them unsuitable (9).
Instead, it has employed a Bayesian framework comprising
Multivariate Analysis (Correlation Analysis), Bayesian Principal
Component Analysis (BPCA), Bayesian Multivariate GARCH
(Bayes-MGARCH), and Markov Switching Model (MSM),
leveraging priors and Markov Chain Monte Carlo (MCMC)
estimation for robustness (13).

Multivariate Analysis computed Pearson correlations and a
Bayesian correlation test for Jowar-Bajara using a Jeffreys-beta
prior, producing yield correlations. Preliminary findings
suggest strong positive correlations between Jowar and Bajara,
reflecting shared monsoon dependence (4). BPCA modeled
standardized yields as a latent structure, estimating loadings for
Jowar on PC1 to address convergence issues. Results indicate
that PC1 captures monsoon-driven volatility for coarse cereals.
Bayes-MGARCH analyzed 52 log-returns with a constant-
correlation model, outputting values that suggest persistent
volatility, with positive correlations (e.g., Wheat-Barley) (2).
MSM, applied to Jowar yields, detected stable and volatile
regimes, potentially linked to 1980s policy shifts, with
probabilities presented in the respective section (15).

This study advances agricultural risk management in Rajasthan
by quantifying yield volatility, correlations, and regime shifts for
five key crops, addressing the region's data constraints and
climatic challenges.
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The strong Jowar-Bajara correlation supports diversification
strategies, reducing risk through complementary cropping
patterns (5). BPCA's identification of monsoon-driven volatility
patterns informs targeted interventions, such as drought-
resistant varieties for coarse cereals. Bayes-MGARCH's
persistent volatility and Wheat-Barley correlations highlight
the need for crop-specific insurance models, while MSM's
regime shifts underscore the impact of historical policies,
guiding future reforms (19). These findings, supported by
Bayesian diagnostics, offer policymakers and farmers
actionable insights for enhancing resilience in Rajasthan's semi-
arid agriculture.

The study's methodological contribution lies in its Bayesian
framework, which stabilizes estimates for small datasets,
enhancing applicability to data-scarce agricultural regions (13).
By bypassing the 100 observation requirement of traditional
methods, it sets a precedent for regional volatility studies.
Cauchy priors for BPCA loadings and -Lewandowski,
Kurowicka, and Joe (LK]) priors for Bayes-MGARCH
correlations, combined with MCMC, ensure robust inference
despite initial convergence challenges.

Future research should extend MSM to multivariate analysis,
incorporating all crops to capture joint regime shifts.
Integrating external factors, such as rainfall or market prices,
could enhance model explanatory power (25). Scaling the
methodology to other Indian states or developing forecasting
models would further support policy planning, such as
optimizing the Pradhan Mantri Fasal Bima Yojana. Collaborative
efforts with agricultural institutes could validate findings and
refine Bayesian priors for Rajasthan's context.

This study makes several significant contributions to
agricultural economics and statistical modeling. First, it
provides a robust Bayesian framework for analyzing crop yield
volatility, offering insights into the shared monsoon-driven
patterns of Jowar and Bajara, which can inform targeted
agricultural policies in Rajasthan. Second, the application of
BPCA and Bayes-MGARCH models advances the methodological
toolkit for handling high-dimensional agricultural time series
data, while the MSM identifies critical regime shifts, potentially
linked to historical policy changes, enabling better forecasting
and risk management for cereal crop production.

LIMITATIONS

Despite its contributions, the study faces several limitations.
The small sample size (53 observations) constrains statistical
power, potentially affecting estimate precision, though Bayesian
priors mitigate this (3). The MSM's focus on Jowar limits insights
into other crops, necessitating multivariate extensions. The
exclusion of Area and Production data overlooks potential
covariates that could explain volatility (e.g., irrigation
expansion). External factors, such as rainfall, temperature, or
market prices, were not modeled, potentially underestimating
environmental impacts (22). The constant-correlation
assumption in Bayes-MGARCH simplifies dynamics, possibly
missing time-varying correlations captured by models like
“dccfit’. Finally, BPCA's initial convergence issues suggest the
need for refined priors or longer MCMC chains. Addressing
these limitations in future work, through larger datasets or
additional variables, would enhance the study's robustness.

CONFLICT OF INTEREST: The author declares no conflicts of
interest.

ACKNOWLEDGEMENTS: We sincerely thank the reviewer for
their thorough and insightful feedback during the review
process of our manuscript. Their valuable comments and
constructive suggestions have greatly enhanced the clarity,
quality, and impact of our work. We deeply appreciate the time,
effort, and expertise they invested, which have been
instrumental in refining our research and strengthening its
contribution to the field.

REFERENCES

1. Anderson, T. W. (2010). An Introduction to Multivariate
Statistical Analysis. Wiley.

2. Bauwens, L., Laurent, S., and Rombouts, J. V. K. (2006).
Multivariate GARCH models: A survey. Journal of Applied
Econometrics, 21(1),79-109.

3. Bernardo, ]. M. and Smith, A. F. M. (2000). Bayesian Theory.
Wiley.

4. Joshi, P. K, Gulati, A, Birthal, P. S, &Tewari, L. (2004).
Agriculture diversification in South Asia: Patterns,
determinants and policy implications. Economic and
Political Weekly, 39(24),2457-2467.

5. Birthal, P.S,, Negi, D.S., Khan, M. T.and Agarwal, S. (2015).1s
Indian agriculture becoming resilient to droughts?
Evidence from rice production systems, Food Policy, 56, 1-
12.

6. Birthal, P. S. and Negi, D. S. (2012). Livestock for Higher,
Sustainable and Inclusive Agricultural Growth. Economic
and Political Weekly, 47(26-27),89-99.

7. Brooks, S. P. and Gelman, A. (1998). General methods for
monitoring convergence of iterative simulations. Journal of
Computational and Graphical Statistics, 7(4), 434-455.

8. Yadav, M. and Choudhary, R. (2023). Challenges and
opportunities for agriculture in Rajasthan, Marumegh,
8(2),10-13.

9. Engle, R. F. (2002). Dynamic conditional correlation: A
simple class of multivariate generalized autoregressive
conditional heteroskedasticity models. Journal of Business
& Economic Statistics, 20(3),339-350.

10. FAO (2021). In Brief to The State of Food and Agriculture
2021. Making agrifood systems more resilient to shocks
and stresses. Rome, FAO. doi.org/10.4060/cb7351en.

11. Gadgil, S. and Gadgil, A. (2006). The Indian Monsoon, GDP
and Agriculture. Economic and Political Weekly, 41, 4887-
4895. http://www.jstor.org/stable /4418949

12. Gelman, A. and Rubin, D. B. (1992). Inference from iterative
simulation using multiple sequences. Statistical Science,
7(4),457-472.

13. Gelman, A, Carlin, J. B., Stern, H. S. and Rubin, D. B. (2013).
Bayesian Data Analysis (3rd ed.). Chapman and Hall/CRC.

369.

© 2025 AATCC Review. All Rights Reserved.



Manoj Kumar Sharma et al,, / AATCC Review (2025)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Government of Rajasthan. (2023). Rajasthan Agricultural
Statistics 2022-23. Directorate of Economics and Statistics.

Hamilton, ]J. D. (1989). A new approach to the economic
analysis of nonstationary time series and the business
cycle. Econometrica, 57(2),357-384.

Jeffreys, H. (1961). Theory of Probability (3rd ed.). Oxford
University Press.

Kim, C.]. and Nelson, C. R. (1999). State-Space Models with
Regime Switching. MIT Press.

Stepha, G. E. ]. (2022). Impact of green revolution in India.
International Journal of Health Sciences, 6(54),
5291-5297.https://doi.org/10.53730/ijhs.v6nS4.10077

Tiwari, R., Chand, K., and Anjum B. (2020). Crop Insurance
in India: A Review of Pradhan MantriFasalBimaYojana. FIIB
Business Review, 9(4), 249-255, https://doi.org/
10.1Kumar177/2319714520966084

Murphy, K. P. (2012). Machine Learning: A Probabilistic
Perspective, The MIT Press, Cambridge, Massachusetts,
London, England.

Jackman, S. (2009). Bayesian Analysis for the Social
Sciences. Wiley.

Datta, P, Behera, B. and Rahut, D.B. (2022). Climate change
and Indian agriculture: A systematic review of farmers'
perception, adaptation, and transformation.
Environmental Challenges, 8,1-12.
https://doi.org/10.1016/j.envc.2022.100543

Mohapatra, G., George, M. and Pandey, S. (2022).
Vulnerability and adaptation to climate change in
Rajasthan, Economic Annals, 67(234):109-138

24,

25.

26.

27.

28.

29.

30.

Jhajhria, D.R. (2014). Impact of government policies on
agricultural productivity and sustainability in Rajasthan,
International Journal of Creative Research Thoughts. 2(1),
427-437.

Birthal, PS. (2022). Climate Change and Risk Management
in Indian Agriculture, NABARD Research and Policy Series
No.4/2022.

https://www.nabard.org/auth /writereaddata/tender/20
07223845Paper-4-Climate-and-Risk-Management-Dr.-

Birthal.pdf

Smid, S.C., McNeish, D., Miocevi¢, M. and Schoot, R. (2020).
Bayesian Versus Frequentist Estimation for Structural
Equation Models in Small Sample Contexts: A Systematic
Review, Structural Equation Modeling: A Multidisciplinary
Journal, 27:131-161, https://doi.org/10.1080/
10705511.2019.1577140.

Stan Development Team. (2023). Stan Modeling Language
User's Guide and Reference Manual. Version 2.33.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic
principal component analysis. Journal of the Royal
Statistical Society: Series B, 61(3),611-622.

Tsay, R. S. (2010). Analysis of Financial Time Series (3rd
ed.). Wiley.

FAO. (2016). Increasing the resilience of agricultural
livelihoods. FAO report.
https://openknowledge.fao.org/server/api/core/bitstrea
ms/39e74ba2-e33d-45bc-a199-1668d92d908f/content

370.

© 2025 AATCC Review. All Rights Reserved.


https://www.nabard.org/auth/writereaddata/tender/2007223845Paper-4-Climate-and-Risk-Management-Dr.-Birthal.pdf
https://www.nabard.org/auth/writereaddata/tender/2007223845Paper-4-Climate-and-Risk-Management-Dr.-Birthal.pdf
https://www.nabard.org/auth/writereaddata/tender/2007223845Paper-4-Climate-and-Risk-Management-Dr.-Birthal.pdf
https://doi.org/10.1080/10705511.2019.1577140
https://doi.org/10.1080/10705511.2019.1577140
https://doi.org/10.1080/10705511.2019.1577140
https://doi.org/10.53730/ijhs.v6nS4.10077
https://doi.org/10.1016/j.envc.2022.100543

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

