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( ABSTRACT

Cold plasma technology has emerged as a promising tool in the field of plant science and agriculture. Cold plasma, also known as non-
thermal plasma, is a partially ionized gas composed of ions, electrons, neutral molecules, and reactive species, generated at or near
room temperature. Unlike thermal plasma, cold plasma can be applied to biological materials such as seeds and plants without
causing thermal damage, making it highly suitable for agricultural applications. In the context of seed science and plant technology,
cold plasma offers a range of benefits. It has been shown to enhance seed germination, improve seedling vigor, and decontaminate
seeds by inactivating pathogens and degrading pesticide residues on the seed surface. The reactive oxygen and nitrogen species (ROS
and RNS) generated during plasma treatment can modify the seed coat, increase water uptake, and trigger metabolic activities
critical for early growth stages. Beyond seeds, cold plasma treatments are being explored for plant growth promotion, stress
tolerance enhancement, and post-harvest preservation. These applications align with the goals of sustainable agriculture, as cold
plasma is a chemical-free, environmentally friendly alternative to conventional treatments. Despite its growing potential, the
underlying mechanisms of cold plasma interactions with plant systems are still under investigation. One of the difficulties
encountered during the current investigations was the lack of defined protocols for exposure length, gas type, pressure, voltage, or
the distance between the plasma and seed source coupled with underlying molecular mechanisms. Continued interdisciplinary
research is essential to optimize treatment protocols, ensure safety, and fully harness this innovative technology in agriculture.
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Introduction

Cold Plasma: Composition and Characteristics

Cold plasma, often described as the fourth state of matter,
represents a partially ionized gas comprising a complex mixture
of reactive and energetic species. It consists of excited atoms and
molecules, positive and negative ions, electrons, free radicals, as
well as reactive oxygen species (ROS) and reactive nitrogen
species (RNS). These components coexist in both excited and
ground states, contributing to the unique physicochemical
properties of cold plasma. A defining feature of cold plasma is its
non-equilibrium nature. While the electrons possess high
kinetic energy, the bulk gas, gas-comprising ions and neutral
molecules, remains at relatively low temperatures. This
temperature disparity allows cold plasma to remain thermally
benign, minimizing damage to heat-sensitive materials and
biological tissues. The low overall gas temperature arises not
from electron energy transfer, but rather from the efficient
cooling ofions and uncharged molecules [1].

Operationally, plasma sources generating temperatures near
ambient conditions, typically below 60°C, are classified as cold
plasmas [2],[3]-
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This temperature threshold facilitates the application of cold
plasma in diverse fields such as biomedicine, food processing,
and materials science, where thermal sensitivity is a critical
consideration.

Cold Plasma in Plant Protection and Stress Tolerance

Cold plasma generates a wide array of reactive oxygen species
(ROS) and reactive nitrogen species (RNS), along with other
strong oxidizing agents. These reactive components can
penetrate microbial cells, leading to oxidation of the
cytoplasmic membrane, disruption of cellular functions, and
eventual microbial inactivation [4]. Such antimicrobial
properties make cold plasma a promising tool for managing
phytopathogensinagriculture.

Beyond its antimicrobial activity, cold plasma treatment has
shown beneficial effects on seed physiology and early plant
development. For instance, plasma exposure has been reported
to significantly enhance seed germination rates and water
uptake in seedlings exposed to chilling stress [5]. These
improvements can be attributed to the modulation of seed
surface properties and potential activation of stress-responsive
pathways.

Cold plasma also plays a critical role in reducing plant disease
incidence and severity, which is of great importance given that
plant diseases are responsible for approximately 20-30% of
global crop losses annually [6]. The antimicrobial efficacy of
cold plasma has been demonstrated across various crop species
[7, 8], and the application of plasma-activated water (PAW)
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has further expanded its utility for disease control [9, 10].
Despite these promising findings, the induction of plant defense
responses-, particularly in relation to cold stress tolerance- via
cold plasma seed treatments, remains poorly understood and
underexplored in agricultural research. Further, investigation is
required to elucidate the underlying molecular mechanisms and
optimize treatment protocols for specific crop species and
environmental conditions.

Plasma, an ionized gas, can be generated under both low-
pressure and atmospheric conditions. Its composition is highly
dependent on operational parameters such as applied voltage,
frequency, humidity, gas flow rate, and gas mixture-, factors that
critically influence the effectiveness of plasma-based
treatments in agricultural applications. Among the various
plasma sources, dielectric barrier discharge (DBD) is the most
commonly employed in agricultural contexts, followed by
plasma jets, corona discharges, microwave plasmas,
radiofrequency systems, and gliding arc discharges [11, 12].
Plasma treatment of seeds and seedlings may be performed
either directly, by exposing them to the plasma field, or
indirectly, by placing them ata distance from the discharge zone.
Alternatively, plasma-activated liquids-such as plasma-
activated water (PAW) and plasma-activated media (PAM)-can
be used to soak seeds or water plants. Comparative analyses
between gaseous plasma treatments and plasma-activated
aqueous treatments have demonstrated similar outcomes in
terms of macroscopic plantresponses [13, 14].

Several studies have reported that the enhancement of seed
germination and plant growth is significantly influenced by the
type of feed gas used during plasma generation. Notably, gases
such as aniline, cyclohexane, and helium have been shown to
produce varying biological effects [15, 16].

Rice is particularly sensitive to low temperatures during the
vegetative stage, which can significantly inhibit seed
germination [17, 18] and suppress seedling development.
Symptoms of cold stress include leaf curling, shoot stunting, and
reduced tillering [19]. With the increasing frequency of extreme
temperature events due to climate change, rice cultivation is
increasingly subjected to yield penalties. Exposure to low
temperatures can damage root tissues, impairing water uptake
and nutrient transport to the shoot, thereby limiting overall
seedling growth [20, 21].

Recent studies have shown that non-thermal plasma treatment,
applied at 15.0 kV for 30 seconds, can enhance rice seed
germination and seedling growth under low-temperature
stress. This effect is associated with an upregulation of
antioxidant enzyme activity, including superoxide dismutase
(SOD), catalase (CAT), and peroxidase (POD) [22].

Cold plasma technology has been employed to enhance growth
and yield parameters in rice [23,24,25]. In addition to
agronomic benefits, cold plasma treatment has been reported to
significantly improve the cooking properties of rice grains
[26,27]. Treatment of rice seeds with cold plasma has resulted in
notable improvements in key morphological traits, including
panicle length, stem length, seedling height, panicle weight, and
harvestindex [25].

Furthermore, cold plasma has been effectively utilized to
enhance seed coat permeability without altering the seed's
moisture content. This characteristic has made plasma
treatment a promising tool in agriculture for improving seed
quality, enhancing seed performance, and inactivating
pathogenic microorganisms [28].

Possible effect of plasma treatments at the molecularlevel
Several studies have demonstrated that plant development,
particularly processes regulated by thiol groups, can be
significantly influenced by redox reactions triggered by reactive
oxygen species (ROS) generated from water vapour plasma [29].
Non-thermal plasma has emerged as a promising alternative to
traditional seed enhancement techniques such as scarification,
stratification, and priming, with numerous reports highlighting
its positive effects on plant growth and development [30].
Plasma-based treatments offer multiple advantages, including
non-destructive processing, elimination of chemical pesticides,
and the provision of environmentally sustainable seed
treatment methods [15, 30,31]. In addition to improving seed
health, plasma technology has been shown to enhance seed
quality and promote robust plantgrowth [11, 32].

Exposure of seeds to plasma has been shown to induce changes
in enzymatic activity [29] and effectively sterilize seed surfaces,
reducing microbial contamination [31]. Plasma treatments can
modulate seed germination dynamics, either enhancing or
delaying the process depending on treatment parameters and
crop type [15]. Notable advancements in plasma-based
agricultural applications include the use of microwave
discharges [11] and low-density radio frequency (RF)
discharges [33,28] which have opened new avenues for seed
treatmenttechnologies.

Numerous studies have explored the effects of plasma on
germination patterns in various crops, including wheat, maize,
radish, oat, safflower, and blue lupine [11,28,30,32]. For
example, safflower seeds exhibited a 50% increase in
germination rate following RF plasma treatment with argon for
130 minutes [30]. Similarly, soybean seeds treated with cold
plasma at varying power levels (0-120 W) for 15 seconds
showed significant improvements in both germination and
seedling vigour [34].

The impact of various plasma treatments on different crop
speciesis summarized in Table 1,2 and Table 3.
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Table 1. Common Plasma Sources and Their Applications in Agriculture

Plasma Source Operating Conditions Gas Types Used Mode of Application Agricultural Applications References
At heri 1 Direct and indirect
Dielectric Barrier Discharge mospheric or fow . frectand indirec Seed germination, microbial inactivation,
(DBD) pressure Air, 0z, N, Ar treatment stress tolerance [11,12]
High voltage AC PAW & PAM
Atmospheric pressure Germination, root growth stimulation
Plasma Jet Low voltage RF or He, Ar, air Direct treatment P g W u ! [16]
. sterilization
microwave
At heri
Corona Discharge m(?Sp eric pressure Air, N, Indirect treatment Disinfection, seed surface modification [12]
High voltage DC
L t heri
Microwave Plasma ow 0;;:;?:: ere Ar, N, Direct and indirect Germination enhancement, sterilization [35]
Radiofrequency (RF) Plasma Low pressure 0y, N,, He Direct treatment Seed coat etching, microbial inactivation [15]
At heri Direct and PAW
Gliding Arc mospheric pressure Air, Ny, CO, frectan . Growth promotion, stress tolerance [36]
AC power generation
Abbreviations:
* PAW - Plasma-Activated Water
e PAM - Plasma-Activated Media
e RF-Radiofrequency
¢ DC-DirectCurrent
e AC-Alternating Current
Table 2: Impact of plasma treatments on field and horticultural crops
S.No Crop Type of plasma Impact summary Reference
Radio frequency The activities of superoxide dismutase and catalase were increased by
0il seed capacitively 17.71%, 16.25% and 13.0%, 13.2% in drought-sensitive and drought-
1 rape coupled plasma generated tolerant cultivars, respectively. Further, increase in germination rate, [37]
using helium gas soluble sugars and proteins and reduction in malonaldehyde content
was noticed under water deficit conditions.
Plasma-activated Up regulated t.he syn‘the51‘s of pthoger}esns re-lz‘ated. genes, mduc.ed
Tomato hormone-mediated signaling, epigenetic modifications and proline
2 water X i X i [38]
accumulation promoting both disease resistance and drought stress
tolerance
Wheat Arc discharge Induced the activity of peroxidase,
3 plasma a-amylase and soluble proteins enhancing drought tolerance. However, [39]
the degree of tolerance varied between the cultivars
. . Reduction in pH of seeds and decreased bioavailability of cadmium.
Low pressure dielectric . . . )
. . . Increase in the activity of catalase and super oxide dismutase, total
4 Wheat barrier discharge using . ) . [40]
. soluble protein content and down-regulation of cadmium transporter
(air/argon, argon/oxygen) . . )
genes was noticed in treated seedlings
At heri
Water :;Zisu:enc Significant reduction in the bio concentration factor of cadmium from [41]
5 spinach i 0.864 to 0.54. However, the concentration of lead remained un affected
plasma jet
through plasma treatment
Enhanced the expression of heat shock transcription factor-44,
6 Wheat Dielectric barrier discharge peroxidase activity by 25% and phenylalanine ammonia lyase activity 42]
plasma by 21%. Increased tolerance to salt stresses besides, increase in shoots
dry mass (18%), leaf area (18%) and chlorophyll-content (37.5%).
. Atmospheric pressure cold Provoked epig?netic chz?mges through methy!ation and demethylation of
s Rice lasma promoters involved in a-amylase synthesis (OsAmy1A, OsAmy1C, [43]
P OsAmy3B and OsAmy3E) and abscisic acid synthesis genes (OsNCED2
and OsNCEDS5) promoting germination in seeds exposed to heat stress.
Maize Atmospheric pressure Soluble sugar content, proline and peroxidase activity were increased by (44]
9 cold plasma of 5.5%, 24.7% and 33.3% respectively. Electrolyte leakage decreased
by 20.9% resulting in cold tolerance
. Significant impact in enhancing water absorption, whereas, treatment
cold plasma generated using . . . .
10 Cotton air/ argon for 21 min using air could enhance both water absorption and [5]
8 germination followed by 81 min of argon plasma treatment increasing
tolerance to cold.
pre-treatment of seeds with cold plasma for 30 seconds increased oil
11 Sunflower cold plasma and seed yield of sunflower by 68.8 and 58.5 per cent respectively in the [45]
weed infest treatment than control
710. © 2025 AATCC Review. All Rights Reserved.
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Table 3: Impact of plasma treatments targeted for pathogens in field and horticultural crops

S.No Crop Type of plasma Pathogens targeted Impact summary Reference
Alternaria sp., Fusarium sp.,
] llasp., Pencilli .
Gibbere 'asp, enct ”,lm SP- Reduction in number of fungal colonies
1 Wheat seeds Low-temperature plasma Rhizopus stolonif . [46]
i within 10 s of exposure.
era, Trichoderma sp. and non-
spore forming fungi
Atmospheric pressure
dielectric barrier , Reversal of oxidative damage caused by
) . Diaporthe/ .
2 Soybean seeds discharge plasma using . fungal complex in the treated seeds. [47]
. Phomopsis complex
nitrogen/
oxygen
Barley and corn . Aslp‘er"gillus sp., Fungal load on the .see-d.s of both lcrop
3 <eeds Glow discharge plasma Penicillium sp. and species decreased significantly with an [48]
Fusarium sp. increase in treatment duration
. Inhibition in the growth of fungus and
Atmospheric pressure 92% reduction in the number of fungal
4 Rice seeds dielectric barrier discharge Gibberella fujikuroi o g [49]
colonies on the plasma treated seeds
plasma
Micro dielectric barrier Fusarium oxysporum f s Significant reduction in spore
5 Tomato seeds discharge veo };riici 5P germination per cent after 10 min of [50]
plasma using air/argon veop treatment
Aspergillus sp., Fungal load on the seeds of both crop
Barley and corn . i . . .
6 <eeds Glow discharge plasma Penicillium sp. and species decreased significantly with [48]
Fusarium sp. an increase in treatment duration
- Rice seeds Atmospheric ]?ressure Burkholderia plantarii Diseas? severity index reduced to 38.6% [51]
plasma jet in the plasma treated seeds.
Significant increase in resistance against
Ralstonii bacteria and i ti
8 Tomato seeds Inductive Helium plasma aistonta . al_? eriaand improvement in . [52]
solanacearum antioxidants and hydrogen peroxide
concentration
Significant reduction in inoculum load
Low pressure plasma using . after 5 min of treatment, and complete
9 Cabbage seeds Xanthomonas campestris . L . [53]
Argon inactivation of bacteria after
40 min of treatment
The mortality of 95.0 % -100% for pre
adult stages can be achieved within
seconds of treatment, but longer plasma
exposure (5 min) is required to kill adult
10 Stored grains Dielectric barrier discharge Tribolium castaneum insects. [54]
Cold plasma treatment reduces both the
respiration rate and the weight of insects
and affects the levels of oxidative stress
markers in adult populations.
Plasma treated and untreated chickpeas
Cold plasma at different were stored in an airtight ziplock pouch
11 Chickpea power 40, 50, and 60 W Callosobruchus chinensis L. and found effective in controlling the [55]
each for 10, 15, 20 min. pulse beetle infestation of treated
chickpea samples

One of the key advantages of plasma treatment is its ability to
enhance seed viability and performance withoutleaving behind
toxic chemical residues. This is largely due to the fact that
plasma is composed of naturally occurring reactive species-,
such as ions, electrons, and reactive oxygen and nitrogen
species-, that rapidly recombine into non-reactive forms shortly
after treatment. Furthermore, plasma components typically
exhibit a shallow penetration depth of approximately 10
nanometers, resulting in effects that are largely limited to
surface functionalization. This makes plasma particularly
effective for modifying the seed coat without compromising
internal structures. Additionally, plasma technologies are
generally characterized by low maintenance requirements and
minimal energy consumption, making them an economically
and environmentally sustainable option for agricultural
applications [56].

Future scope of the study

It is necessary to investigate how cold plasma affects yield-
contributing pathways and how plasma affects the genes that
produce yield-contributing traits.

Compared to the phenotypic impacts, the underlying
mechanisms of plasma effects are comparatively unexplored. To
optimise plasma systems and their uses, additional knowledge
about the modes of plasma action on plant production and
sustainability is required.
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