

## Original Research Article

## Open Access

# Evaluation of insecticidal activities of *oroxylum indicum* plant extracts against pulse beetle *callosobruchus chinensis* (Coleoptera: Bruchidae)

Rajat Mohan Bhatt\*,  Meena Agnihotri  and Saba Tanveer 

Department of Entomology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India



## ABSTRACT

Studies on insecticidal properties of *Oroxylum indicum* (L.) Kurz against *Callosobruchus chinensis* (L.) were carried out in the Department of Entomology at G.B. Pant University of Agriculture and Technology, Pantnagar, during the rabi season, 2022-23. Under laboratory conditions, different plant extracts of *O. indicum* leaf, bark, capsule, seed, and neem leaf are phytochemically analysed and tested against *C. chinensis* in methanol and hexane solvent at different concentrations. In the evaluation of different extracts for contact and fumigant toxicity against *C. chinensis*, in terms of contact toxicity, the methanol neem leaf extract consistently showed the highest corrected mortality %. At 72 hrs, it achieved a corrected mortality of 85.78 % from 57.82 % after 24 hrs. The methanolic *O. indicum* seed extract also showed significant corrected mortality %, ranging from 61.24 % to 79.53 % from 24 hrs to 72 hrs, respectively, at a 12 % concentration. Similarly, in fumigation, methanolic neem leaf extract showed the highest mortality of 50 % after 24 hrs and 93.33 % after 72 hrs at 12 % concentration, and among the *O. indicum* plant extracts, methanol extract of *O. indicum* seed shows the highest mortality, ranging from 33.33 % to 66.67 % over 72 hrs at 12 % concentration. Different extracts were also evaluated for oviposition deterrence and adult emergence deterrence against *C. chinensis*; the results revealed that. At a 5 % concentration, the methanol extract of neem leaf showed the highest oviposition deterrence with a value of 84.10 %, while the methanol extract of *O. indicum* seed showed the second-highest deterrence at 75.47 %. For adult emergence deterrence, the methanol extract of neem leaf showed the highest efficacy with a deterrence of 87.32 % followed by the methanol extract of *O. indicum* seed with a deterrence of 57.97 %.

**Keywords:** *Oroxylum indicum*, *Callosobruchus chinensis*, fumigant toxicity, oviposition deterrence, Contact toxicity.

## INTRODUCTION

Chickpea (*Cicer arietinum* L.) is an important and widely cultivated rabi pulse crop in India. It is commonly known as 'Bengal gram' or 'Kabuli gram'. It is a rich source of proteins, carbohydrates, minerals, and vitamin C. The tender leaves of the crop could be used for vegetables (Wood and Grusak, 2007). In India, this crop is grown on a 99 Lakh ha area. The nation's highest productivity level was 1086 kg/ha, which resulted in a record-breaking harvest of 107 lakh tonnes in 2021-2022. As usual, Madhya Pradesh supplied a significant 28 per cent of the nation's total cropped area and 34 per cent of its total production, placing it top in both categories (Ministry of Agriculture and Farmers Welfare, 2022). Various biotic and abiotic factors contribute to the decreased productivity of chickpea crops. However, in recent years, the primary constraint affecting chickpea cultivation has been the infestation of insect pests. In India, it is estimated that insect pests cause annual losses of approximately 7-15% in chickpea production, resulting in a monetary loss of 10950 million Indian rupees. In storage conditions, chickpea seeds suffer heavy qualitative and quantitative losses from the attack of pulse beetle,

*Callosobruchus chinensis* (L.) (Coleoptera: Chrysomelidae (formerly Bruchidae)) (Demianyk *et al.*, 2007). *Callosobruchus chinensis* is a major economically important pest of all pulses and causes 40-50 per cent losses in pulse storage (Meena *et al.*, 2017). Adults of bruchid do not need food or water and spend most of their lives (1-2 weeks) mating and laying eggs on seeds. The grub only consumes and develops on chickpea seeds. Mature females lay their eggs one at a time, affixing each one to a seed's testa (Varma and Anandhi, 2010). Chickpea seeds lose weight, their value on the market, and their ability to germinate due to pest infestation (Nishad *et al.*, 2017). To manage these pest populations, farmers undergo repeated use of chemicals to reduce these losses and the excessive use of pesticides has not only damaged the environment but has also damaged the health of non-target species, including humans. The harmful effects include the deposition of chemical residues, pest resurgence, secondary pest outbreaks, environmental pollution, and the development of resistance against insecticides. (Dhingra *et al.*, 1988). Additionally, it has been shown that some insects that feed on stored grain have become resistant to methyl bromide and phosphine. So it is vital to look for alternate pest control strategies to solve these issues. After realising the harmful effects of pesticide usage, farmers are now going for eco-friendly pest management approaches. The public's growing concern over safe food and a healthy environment, along with the failure of chemical pesticides to eliminate the insect, has sparked a search for new, ecologically friendly control ways to deal with these pests.

\*Corresponding Author: Rajat Mohan Bhatt

DOI: <https://doi.org/10.21276/AATCCReview.2025.13.04.748>

© 2025 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

Botanical insecticides are plant-derived substances that repel, prevent the growth of, or eliminate pests (Hikal *et al.*, 2017). The importance of botanical pesticides is mainly due to their effectiveness, biodegradability, different modes of action, less toxicity, and availability of source materials (Neeraj *et al.*, 2017). Commonly used botanical pesticides are preferred in organic farming because food grown organically fetches higher prices. Azadirachtin, which is derived from various parts of the neem tree (*Azadirachta indica*) such as the seeds, wood, bark, leaves, and fruits, is widely recognised and extensively utilised. *Oroxylum indicum* (Bignoniaceae), also known as Sonapatha or Shyonaka, is a commonly used herbal medicine in the Ayurvedic system (Joshi *et al.*, 1977). It belongs to the monotypic genus *Oroxylum* and is commonly known as the Indian trumpet tree, Indian trumpet flower, Broken bones, Indian caper, midnight horror, scythe tree, or tree of Damocles (Harminder and Chaudhary, 2011). This plant has the potential to cause mortality at different stages of an insect's life cycle. Therefore, the use of botanicals is one of the main pillars in bio-intensive approaches to pest management.

## MATERIAL AND METHOD

### Site of experiments

The current research was conducted in the Pulse Entomology Laboratory of the Department of Entomology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand.

### Experimental Details

The experiment included 10 plant extracts (Methanol and Hexane extracts of *O. indicum* leaves, stem bark, fruit pods, seeds, and neem leaves) at 5 different concentrations (100, 125, 250, 500, 1000 ppm) and one control. All the extracts are prepared using a Soxhlet apparatus and concentrated with the help of a rotary evaporator. These were used to assess their fumigant, contact, and oviposition, and adult deterrence under storage conditions against *Callosobruchus chinensis*. Neem leaf treatment is taken as a positive control for comparison.

### Fumigant activity

To test the fumigant toxicity, the experiment was carried out as described by Ayvaz *et al.*, (2008). Plant extracts were applied 400 $\mu$ l concentration of 5, 8, and 12 per cent ppm on a filter paper strip (3 $\times$ 2.5 cm) placed to the lower side of the Petri dish. Five adults were released in the Petri dish separately and the Petri dish was sealed with parafilm. Released insects were kept at 27 $\pm$ 1°C, 70 $\pm$ 5 % relative humidity in B.O.D. The released insects were exposed for up to 72 hrs and cumulative mortality was recorded at 24, 48, and 72 hours after exposure.

### Under Contact condition

To test the contact toxicity, the experiment was carried out as described by Hossain *et al.*, (2014), fifty grams of undamaged chickpea seeds were placed into a plastic container and plant extracts were applied at 400 $\mu$ l concentrations of 5, 8, and 12 per cent in a container. After that, the containers were shaken properly so that the extract would get mixed. Properly with seeds. 10 adults were released in the containers. Released insects were kept at 27 $\pm$ 1°C, 70 $\pm$ 5 % relative humidity in B.O.D. The released insects were exposed for up to 72 hrs and cumulative mortality was recorded at 24, 48, and 72 hours after exposure. % corrected mortality was calculated as:

$$\text{Per cent mortality} = \frac{\text{Mortality in treatment (per cent)} - \text{Mortality in control (per cent)}}{100 - \text{Mortality in control (per cent)}} \times 100$$

### Effect on the Oviposition and Adult Emergence

Another set of experiments was conducted to study oviposition deterrence. 50 grams of freshly treated grains were taken from each jar and separated into three replications of 50 grams each. In each replication, five pairs of freshly emerged adults were released, and the number of eggs was calculated after seven days from the release of the insects. 5gm seeds were randomly taken, and the number of egged grains was counted. Total adult emerged were also counted after 1 month and % deterrence was calculated.

$$\% \text{ deterrence} = (\text{control} - \text{mean of each treatment}) / \text{control} \times 100$$

## RESULTS AND DISCUSSION

### Fumigant mortality

The fumigant mortality effect of all the extracts on the pulse beetle at different DAT is presented in Table 1. All the treatments showed significantly higher mortality compared to control (DMRT,  $p \leq 0.05$ ), and mortality increased with increasing dosages in all the extracts. Methanol extracts generally exhibit higher corrected mortality %ages compared to hexane across all concentrations and days. In the study, among *O. indicum* extracts, chickpea seeds treated with 12% methanol seed extract showed the highest corrected mortality (79.53%) after three days (3 DAT) followed by leaf extract (63.11%). The effectiveness of the seed extract was significantly at par with the corrected mortality caused by methanol neem leaf extract (85.78%) and hexane neem leaf extract (73.90%), suggesting that the methanol seed extract has potential against pulse beetle. These results contradict the study of Danial *et al.* (2015) in which the hexane fraction of the extract was more repellent than methanol and acetone. The hexane fraction also showed superior toxicity, causing 100% mortality of *C. maculatus* at 5 g/kg within 7 days of exposure. Similar to the methanol extracts, hexane extracts of *O. indicum* showed the highest corrected mortality in the seeds extract (56.00%) followed by leaf extract, with hexane also having a comparable mortality rate (55.88%). However, neem leaf extract remained the most effective, causing significantly higher mortality (73.90%) at 12% concentration after 3 days. Chetri *et al.* (2022) found that the plant extract of *S. robusta* shows 90% repellency, followed by 81.5% with *O. indicum* at 12%.

### Contact mortality

The contact mortality effect of all the extracts on the pulse beetle at different DAT is presented in Table 2. All the treatments showed increased mortality with increasing dosages in all the extracts. Methanol extracts generally exhibit better contact toxicity compared to hexane across all concentrations and days. Among *O. indicum* extracts, chickpea seeds treated with 12% methanol seed extract showed the highest corrected mortality (66.67%) after three days (3 DAT), which was significantly at par with leaf extract (63.33%) and hexane neem leaf extract (73.33%). Methanol neem leaf extract with a corrected mortality rate of 93.33% was the most effective. No other treatment came close to achieving such a high mortality rate. Among the hexane extracts, Neem Leaf (positive control) exhibited the highest mortality rate of 73.33%, followed by *O. indicum* Seed (56.67%) and leaf extracts (56.67%). Chetri *et al.* (2022) also found that *O. indicum* extract showed 68.30% mortality at 12% concentration when applied to the dorsal side of the pulse beetle. Zafar *et al.* (2018) investigated the efficacy of six different botanicals (Neem, Bakain, Dharek, Turmeric, Tumha and AK) after an exposure period of 72 hours.

The maximum mortality was recorded in Neem powder treatment at 3% concentration.

### Effect on the Oviposition and Adult Emergence

The effect of all the extracts on oviposition deterrence and adult emergence on pulse beetle at 5% concentration is presented in Table 3, Fig.1. Here again, the methanol extract surpassed hexane extract in both oviposition deterrence and adult emergence. Among the *O. Indicum* plant extracts in methanol, the leaf extract showed an egg count of  $30.33 \pm 2.08$  eggs with 75.47% deterrence, followed by the leaf extract of *O. indicum* with  $34.67 \pm 2.52$  eggs and 71.97% deterrence, as compared to the neem leaf extract, which showed the lowest egg count of  $19.67 \pm 2.53$  eggs with significantly higher 84.10% deterrence. Similar to the methanol extracts, In hexane extracts, again the best treatment was neem leaf treatment with the highest deterrence (76.82%) and least egg count ( $28.67 \pm 2.52$ ) followed by *O. indicum* seed extract with 62.53% deterrence and  $46.33 \pm 1.53$ . Patel et al. (2002) showed that increasing the

phenol content of different pulses prolongs the developmental time of the pulse beetle (*C. chinensis*), implying that phenols must have an inhibitory impact on the pulse beetle's developmental process.

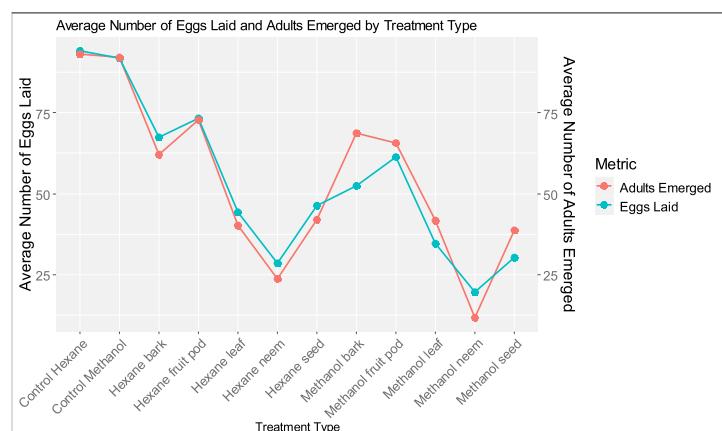



Fig. 1. Average number of Egg laid by female and Adult emerged in chickpea treated with different extracts.

Table 1: Fumigant toxicity of different plant extracts against adult of *C. chinensis*

| S.No. | Treatment         | Corrected mortality % at 5 per cent |                     |                     | Corrected mortality % at 8 per cent |                     |                     | Corrected mortality at % 12 per cent |                     |                     |
|-------|-------------------|-------------------------------------|---------------------|---------------------|-------------------------------------|---------------------|---------------------|--------------------------------------|---------------------|---------------------|
|       |                   | 1 <sup>st</sup> day                 | 2 <sup>nd</sup> day | 3 <sup>rd</sup> day | 1 <sup>st</sup> day                 | 2 <sup>nd</sup> day | 3 <sup>rd</sup> day | 1 <sup>st</sup> day                  | 2 <sup>nd</sup> day | 3 <sup>rd</sup> day |
| 1     | Methanol          | 33.21 <sup>c</sup>                  | 41.50 <sup>d</sup>  | 50.98 <sup>c</sup>  | 51.67 <sup>FG</sup>                 | 56.61 <sup>D</sup>  | 57.13 <sup>E</sup>  | 50.79 <sup>FG</sup>                  | 60.24 <sup>D</sup>  | 63.11 <sup>c</sup>  |
| 2     |                   | 19.05 <sup>B</sup>                  | 30.17 <sup>C</sup>  | 34.56 <sup>B</sup>  | 38.33 <sup>CD</sup>                 | 39.63 <sup>BC</sup> | 40.80 <sup>CD</sup> | 36.54 <sup>CD</sup>                  | 43.36 <sup>C</sup>  | 46.94 <sup>B</sup>  |
| 3     |                   | 19.23 <sup>c</sup>                  | 22.24 <sup>d</sup>  | 33.68 <sup>B</sup>  | 33.33 <sup>BC</sup>                 | 37.75 <sup>BC</sup> | 38.76 <sup>BC</sup> | 33.12 <sup>BC</sup>                  | 41.50 <sup>c</sup>  | 44.98 <sup>B</sup>  |
| 4     |                   | 59.48 <sup>E</sup>                  | 64.16 <sup>E</sup>  | 71.32 <sup>DE</sup> | 61.67 <sup>I</sup>                  | 67.93 <sup>E</sup>  | 75.51 <sup>GF</sup> | 61.24 <sup>H</sup>                   | 69.83 <sup>E</sup>  | 79.53 <sup>DE</sup> |
| 5     |                   | 57.82 <sup>E</sup>                  | 69.83 <sup>E</sup>  | 77.45 <sup>E</sup>  | 58.33 <sup>HI</sup>                 | 73.59 <sup>E</sup>  | 79.59 <sup>G</sup>  | 57.82 <sup>GH</sup>                  | 77.34 <sup>E</sup>  | 85.78 <sup>E</sup>  |
| 6     | Hexane            | 33.33 <sup>c</sup>                  | 44.23 <sup>D</sup>  | 51.96 <sup>c</sup>  | 43.86 <sup>EF</sup>                 | 50.76 <sup>D</sup>  | 54.01 <sup>E</sup>  | 45.61 <sup>EF</sup>                  | 52.85 <sup>D</sup>  | 55.88 <sup>c</sup>  |
| 7     |                   | 15.79 <sup>B</sup>                  | 22.98 <sup>B</sup>  | 30.02 <sup>B</sup>  | 24.56 <sup>B</sup>                  | 28.83 <sup>B</sup>  | 32.01 <sup>B</sup>  | 26.32 <sup>B</sup>                   | 30.72 <sup>B</sup>  | 41.91 <sup>B</sup>  |
| 8     |                   | 7.02 <sup>A</sup>                   | 15.36 <sup>A</sup>  | 13.97 <sup>A</sup>  | 14.04 <sup>A</sup>                  | 15.37 <sup>A</sup>  | 18.02 <sup>A</sup>  | 17.54 <sup>A</sup>                   | 19.06 <sup>A</sup>  | 30.02 <sup>A</sup>  |
| 9     |                   | 33.33 <sup>c</sup>                  | 38.45 <sup>D</sup>  | 45.96 <sup>c</sup>  | 38.60 <sup>DE</sup>                 | 44.22 <sup>C</sup>  | 50.01 <sup>DE</sup> | 42.11 <sup>DE</sup>                  | 46.19 <sup>C</sup>  | 56.00 <sup>c</sup>  |
| 10    |                   | 40.35 <sup>c</sup>                  | 45.97 <sup>D</sup>  | 63.85 <sup>D</sup>  | 50.88 <sup>GH</sup>                 | 57.68 <sup>D</sup>  | 68.01 <sup>F</sup>  | 40.35 <sup>CDE</sup>                 | 57.73 <sup>D</sup>  | 73.90 <sup>D</sup>  |
|       | SE(m) $\pm$       | 1.90                                | 1.19                | 1.25                | 1.89                                | 1.67                | 1.55                | 1.89                                 | 1.47                | 1.39                |
|       | C.D. @ 5 per cent | 5.60                                | 3.49                | 3.60                | 5.55                                | 4.92                | 4.57                | 5.45                                 | 5.50                | 4.89                |

Table 2: Contact toxicity of different plant part extracts of *O. indicum* against adult of *C. chinensis*

| S.No. | Treatment         | Corrected mortality % at 5 per cent |                      |                     | Corrected mortality % at 8 per cent |                      |                      | Corrected mortality at % 12 per cent |                     |                      |
|-------|-------------------|-------------------------------------|----------------------|---------------------|-------------------------------------|----------------------|----------------------|--------------------------------------|---------------------|----------------------|
|       |                   | 1 <sup>st</sup> day                 | 2 <sup>nd</sup> day  | 3 <sup>rd</sup> day | 1 <sup>st</sup> day                 | 2 <sup>nd</sup> day  | 3 <sup>rd</sup> day  | 1 <sup>st</sup> day                  | 2 <sup>nd</sup> day | 3 <sup>rd</sup> day  |
| 1     | Methanol          | 26.67 <sup>CD</sup>                 | 43.47 <sup>CDE</sup> | 53.50 <sup>EF</sup> | 30.00 <sup>BC</sup>                 | 53.47 <sup>DEF</sup> | 56.84 <sup>EF</sup>  | 36.67 <sup>CD</sup>                  | 56.67 <sup>CD</sup> | 63.33 <sup>EF</sup>  |
| 2     |                   | 26.67 <sup>CD</sup>                 | 40.10 <sup>CD</sup>  | 43.43 <sup>CD</sup> | 30.00 <sup>BC</sup>                 | 40.10 <sup>BCD</sup> | 43.43 <sup>CDE</sup> | 26.67 <sup>BC</sup>                  | 43.33 <sup>BC</sup> | 46.67 <sup>CD</sup>  |
| 3     |                   | 20.00 <sup>CB</sup>                 | 30.10 <sup>C</sup>   | 33.43 <sup>BC</sup> | 26.67 <sup>BC</sup>                 | 30.10 <sup>BC</sup>  | 33.43 <sup>BCD</sup> | 23.33 <sup>B</sup>                   | 33.33 <sup>B</sup>  | 36.67 <sup>BC</sup>  |
| 4     |                   | 33.33 <sup>DE</sup>                 | 53.47 <sup>DEF</sup> | 53.54 <sup>EF</sup> | 33.33 <sup>BC</sup>                 | 53.47 <sup>DEF</sup> | 56.80 <sup>EF</sup>  | 33.33 <sup>BCD</sup>                 | 56.67 <sup>CD</sup> | 66.67 <sup>EF</sup>  |
| 5     |                   | 43.33 <sup>E</sup>                  | 63.50 <sup>F</sup>   | 63.50 <sup>G</sup>  | 50.00 <sup>D</sup>                  | 63.50 <sup>F</sup>   | 66.87 <sup>F</sup>   | 50.00 <sup>E</sup>                   | 66.67 <sup>D</sup>  | 93.33 <sup>G</sup>   |
| 6     | Hexane            | 26.67 <sup>CD</sup>                 | 43.47 <sup>CDE</sup> | 43.60 <sup>DE</sup> | 26.67 <sup>BC</sup>                 | 43.47 <sup>CDE</sup> | 46.94 <sup>DE</sup>  | 33.33 <sup>BCD</sup>                 | 46.67 <sup>BC</sup> | 56.67 <sup>DE</sup>  |
| 7     |                   | 23.33 <sup>CD</sup>                 | 36.39 <sup>C</sup>   | 30.17 <sup>C</sup>  | 26.67 <sup>BC</sup>                 | 33.43 <sup>BC</sup>  | 33.54 <sup>BC</sup>  | 26.67 <sup>B</sup>                   | 36.67 <sup>B</sup>  | 43.33 <sup>BCD</sup> |
| 8     |                   | 13.33 <sup>B</sup>                  | 20.13 <sup>B</sup>   | 16.77 <sup>B</sup>  | 23.33 <sup>B</sup>                  | 26.73 <sup>B</sup>   | 30.17 <sup>B</sup>   | 23.33 <sup>BC</sup>                  | 30.00 <sup>B</sup>  | 33.33 <sup>B</sup>   |
| 9     |                   | 40.00 <sup>E</sup>                  | 43.47 <sup>CDE</sup> | 46.97 <sup>EF</sup> | 36.67 <sup>BC</sup>                 | 40.13 <sup>BCD</sup> | 50.30 <sup>D</sup>   | 36.67 <sup>CD</sup>                  | 43.33 <sup>BC</sup> | 56.67 <sup>DE</sup>  |
| 10    |                   | 43.33 <sup>E</sup>                  | 56.87 <sup>EF</sup>  | 57.04 <sup>FG</sup> | 40.00 <sup>D</sup>                  | 56.84 <sup>EF</sup>  | 60.37 <sup>EF</sup>  | 40.00 <sup>DE</sup>                  | 66.67 <sup>D</sup>  | 73.33 <sup>F</sup>   |
|       | SE(m) $\pm$       | 1.788                               | 2.42                 | 2.42                | 2.53                                | 2.26                 | 1.97                 | 1.72                                 | 3.11                | 1.86                 |
|       | C.D. @ 5 per cent | 5.22                                | 7.07                 | 7.07 cv             | 7.399                               | 6.68                 | 5.48                 | 5.03                                 | 9.09                | 5.38                 |

Table 3: Oviposition deterrence and progeny production of adult of *C. chinensis* on chickpea seeds treated with different leaf extracts

| S.No. | Treatment | Dose                 | Average no of eggs laid by female | Per cent deterrence | Average no of adults emerged   | Per cent deterrence |
|-------|-----------|----------------------|-----------------------------------|---------------------|--------------------------------|---------------------|
| 1     | Methanol  | Leaf 5 per cent      | 34.67 $\pm$ 2.52 <sup>F</sup>     | 71.97               | 41.66 $\pm$ 3.05 <sup>c</sup>  | 54.71               |
| 2     |           | Bark 5 per cent      | 52.33 $\pm$ 2.08 <sup>D</sup>     | 57.68               | 68.66 $\pm$ 3.51 <sup>AB</sup> | 25.36               |
| 3     |           | Fruit pod 5 per cent | 61.33 $\pm$ 2.52 <sup>C</sup>     | 50.40               | 65.66 $\pm$ 4.04 <sup>AB</sup> | 28.62               |
| 4     |           | Seed 5 per cent      | 30.33 $\pm$ 2.08 <sup>G</sup>     | 75.47               | 38.66 $\pm$ 4.51 <sup>c</sup>  | 57.97               |
| 5     |           | Neem 5 per cent      | 19.67 $\pm$ 2.53 <sup>H</sup>     | 84.10               | 11.66 $\pm$ 3.51 <sup>E</sup>  | 87.31               |
| 6     | Hexane    | Leaf 5 per cent      | 44.33 $\pm$ 2.08 <sup>E</sup>     | 64.15               | 40.33 $\pm$ 5.69 <sup>c</sup>  | 56.63               |
| 7     |           | Bark 5 per cent      | 67.33 $\pm$ 2.08 <sup>B</sup>     | 45.55               | 62.00 $\pm$ 7.00 <sup>B</sup>  | 33.33               |
| 8     |           | Fruit pod 5 per cent | 73.33 $\pm$ 2.52 <sup>A</sup>     | 40.70               | 72.66 $\pm$ 4.73 <sup>A</sup>  | 21.86               |
| 9     |           | Seed 5 per cent      | 46.33 $\pm$ 1.53 <sup>E</sup>     | 62.53               | 42.00 $\pm$ 3.61 <sup>c</sup>  | 54.83               |
| 10    |           | Neem 5 per cent      | 28.67 $\pm$ 2.52 <sup>G</sup>     | 76.82               | 23.66 $\pm$ 5.51 <sup>D</sup>  | 74.55               |
| 11    | Control   | Methanol             | -                                 | 91.67 $\pm$ 2.50    | -                              | 92.000 $\pm$ 2.65   |
| 12    | Control   | Hexane               | -                                 | 94.00 $\pm$ 3.00    | -                              | 93.000 $\pm$ 7.00   |

## CONCLUSION

In conclusion, the study investigated the efficacy of different plant extracts derived from *Oroxylum indicum* against *C. chinensis*. Methanolic seed extract of *O. indicum* was more effective against *C. chinensis*, closely followed by *O. indicum* leaf extract, although they are not better than neem leaf extract but showed significantly at par results in many parameters. It showed high contact and fumigant toxicities, resulting in the mortality of *C. chinensis*. It also showed good ovipositional deterrence, significantly reducing the number of eggs laid by female insects and the emergence of adults. It can become a good novel option to control the problem of pulse beetle under storage conditions. Further research is focused on identifying and isolating the active compounds responsible for their insecticidal properties and exploring their potential use in pest management strategies.

## Acknowledgments

The authors are thankful to the Head, Department of Entomology and Dean, Agriculture of G. B. Pant University of Agriculture and Technology, Pantnagar, for providing necessary facilities and support.

## Conflict of interest

The authors declare that there is no conflict of interest.

## REFERENCES

1. Kosini, D., Nukenine, E. N., & Tofel, K. H. (2015). Efficacy of Cameroonian *Ocimum canum* Sims (Lamiaceae) leaf extract fractions against *Callosobruchus maculatus* (F.) (Coleoptera: Chrysomelidae), infesting Bambara groundnut. *J. Entomol. Zool. Stud.*, 3(5), 487-494.
2. Ayvaz, A., and Karabörklü, S. 2008. Effect of cold storage and different diets on *Ephestia kuehniella* Zeller (Lep: Pyralidae). *J. Pest Sci.*, 81(1): 57.
3. Hossain, M. A., Alim, M. A., Ahmed, K. S. and Haque, M. A. 2014. Insecticidal potentials of plant oils against *Callosobruchus chinensis* (Coleoptera: Bruchidae) in stored chickpea. *J. Entomol. Soc. Iran.*, 34(3): 47-56.
4. Chetri, S., Ahmed, R., & Gogoi, R. (2022). Efficacy of Extracts of *Shorea robusta* and *Oroxylum indicum* Against *Callosobruchus chinensis* (L.). *Indian Journal of Entomology*, 824-826.
5. Wood, J. A. and Grusak, M. A. 2007. Nutritional value of chickpea. In: 'Chickpea breeding and management'. CABI, Wallingford UK. pp. 101-142.
6. Demianyk, C. J., White, N. D. G. and Jayas, D. S. 2007. Storage of chickpea. In: 'Chickpea breeding and management.' CABI, Wallingford UK. pp. 538-554.
7. Varma, S. and Anandhi, P. 2010. Biology of pulse beetle (*Callosobruchus chinensis* Linn., Coleoptera: Bruchidae) and their management through botanicals on stored mung grains in Allahabad region. *Legum. Res.*, 33(1): 38-41.
8. Meena, A. S., Meena, R. S. and Laichattiwar, M. A. 2017. Varietal susceptibility and assessment of losses caused by Pulse Beetle *Callosobruchus chinensis* (L.) in Green Gram Under Laboratory Conditions. *J. Pure Appl. Microbiol.*, 11(1): 259-264.
9. Nishad, R. N., Singh, R. B., Kumar, S. and Singh, P. 2020. Study the seed health status of farmers' saved chickpea seed of Eastern Uttar Pradesh in relation to bruchid, *C. chinensis*. *J. Entomol. Zool.*, 8(4): 356-358.
10. Dhingra, S., Phokela, A. and Mehrotra, K. N. 1988. Cypermethrin resistance in the populations of *Heliothis armigera* Hubner. *Natl. Acad. Sci. Lett.*, 11(4): 123-125.
11. Hikal, W. M., Baeshen, R. S. and Said-Al Ahl, H. A. 2017. Botanical insecticide as simple extractives for pest control. *Cogent Biology*, 3(1): 1404274.
12. Neeraj, G. S., Kumar, A., Ram, S. and Kumar, V. 2017. Evaluation of nematicidal activity of ethanolic extracts of medicinal plants to *Meloidogyne incognita* (kofoid and white) Chitwood under lab conditions. *Ind. J. Pure App. Biosci.*, 1(1): 827-831.
13. Joshi, K. C., Prakash, L. and Shah, R. K. 1977. Chemical examination of the roots of *Tabebuia rosea* and heartwood of *Oroxylum indicum*. *Planta Med.*, 31(3): 257-258.
14. Harminder, V. S. and Chaudhary, A. K. 2011. A Review on the Taxonomy, Ethnobotany, Chemistry and Pharmacology of *Oroxylum indicum* Vent. *Indian J. Pharm. Sci.*, 73(5): 483-490.