

Original Research Article

Open Access

Optimizing growth and flowering in *petunia hybrida* through biochar enhanced potting media

Meghana S*¹ Shivam T. Bhatt² B. M. Tandel³ G. D. Patel⁴ H. M. Patel⁵ A. P. Chaudhary⁶
 Dipal S. Bhatt⁷ Alka Singh⁸

¹Department of Horticulture, Research scholar, ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat 396450, India

²Department of Floriculture, ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat 396450, India

³Department of Fruit Science, ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat 396450, India

⁴Department of Floriculture and Landscape Architecture ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat, India

⁵Department of Soil Science and Agril. Chemistry, ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat 396450, India

⁶Department of Agril. statistics, ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat 396450, India

⁷Department of Floriculture, ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat 396450, India

⁸ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat 396450, India

ABSTRACT

This study, investigates the effect of biochar based potting media on growth and flowering of *Petunia hybrida* conducted from November 2024 to February 2025 at ASPEE College of Horticulture, Navsari Agricultural University, Gujarat, India. Evaluated the impact of seven potting media on the growth and flowering of *Petunia hybrida*. Seven treatments included T_1 (Sand + Vermicompost + Biochar 1:1:0.1 v/v/v), T_2 (Sand + Vermicompost + Biochar 1:1:0.2 v/v/v), T_3 (Sand + Vermicompost + Biochar 1:1:0.3 v/v/v), T_4 (Cocopeat + Biochar 1:0.1 v/v), T_5 (Cocopeat + Biochar 1:0.2 v/v), T_6 (Cocopeat + Biochar 1:0.3 v/v), T_7 (Cocopeat + Vermicompost 2:1 v/v). At 90 days, plants grown in Cocopeat + Biochar 1:0.3 v/v (T_6) achieved maximum plant height (25.31 cm), number of leaves/plant (765.68), fresh weight of shoot (120.20 g/g/plant) and dry weight of shoot (12.25 g/g/plant), fresh weight of leaf (70.16 g/g/plant), dry weight of leaf (11.69 g/g/plant). Root measurements in T_6 were also notable, with fresh weight (7.63 g/g/plant), dry weight (1.52 g/g/plant), longest root length (60.33 cm), root diameter (0.98 mm), and root count (30.53). While the maximum flower bud diameter (5.91 mm) and flower diameter (5.78 cm) were observed in T_6 . Additionally, T_6 yielded the total leaf area (46.37 cm²), net assimilation rate (0.53×10^{-3} g m⁻² day⁻¹), and relative growth rate (1.935×10^{-2} g g⁻¹ day⁻¹). This treatment also showed the lowest root-shoot ratio (0.154), indicating its effectiveness for robust plant growth. This study demonstrates that biochar-based potting media, especially cocopeat + biochar (1:0.3 v/v), significantly enhance growth and flowering in *Petunia hybrida*.

Keywords: Biochar, Cocopeat, Flowering, Plant growth, *Petunia hybrida*, Net assimilation rate, Relative growth rate.

Introduction

Petunia hybrida is an annual plant that belongs to the family Solanaceae. It is originated in South America. The name is derived from the French word 'petun', meaning 'tobacco'. It is one of the most popular flowering pot and landscape plants. The flowers are trumpet shaped, borne in leaf axils which are single, double, and semi-double [23]. Petunias are compact and herbaceous plants with a straggling and decumbent habit, pubescent and sticky, producing showy flowers with a wide range of colours. The leaves are simple and alternate [6]. Flowers are solitary, terminal, auxiliary, and pedicillate with 5-lobed calyx and a funnel-shaped corolla exhibiting zygomorphic symmetry [21]. They are commercially grown in various outdoor landscapes, including as bedding plants, borders, potted plants, window boxes, and hanging baskets, etc. [26].

Potting media are crucial for the optimal growth and development of potted plants. An ideal medium should support plant growth, retain water and nutrients, and allow gas exchange between roots and the atmosphere. Various materials like soil, sand, vermiculite, vermicompost, perlite, peat, sphagnum moss, cocopeat, biochar, sawdust, and woodchips are used alone or in combination for quality plant production [23]. Biochar improves soil structure, porosity, and water retention [5]. Vermicompost is nutrient-rich, enhances water retention, and boosts plant health [20]. Cocopeat resists shrinkage and microbial breakdown due to high lignin [12] while sand improves drainage and aeration [1].

Keeping these facts in view, the experiment entitled "Optimizing growth and flowering in *Petunia hybrida* through biochar enhanced potting media" was conducted to investigate various potting media to determine the optimal medium for various growth and flowering attributes contributing to better quality of *Petunia hybrida*.

Materials and Methods

The present investigation was conducted from November 2024 to February 2025 at the Advanced Training Centre of Soilless Cultivation, ASPEE College of Horticulture, Navsari Agricultural

*Corresponding Author: Meghana S

DOI: <https://doi.org/10.21276/AATCCReview.2025.13.04.349>

© 2025 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

University, Navsari, to evaluate the effect of different potting media on the growth and flowering of *Petunia hybrida*. The experiment was laid out in Completely Randomized Design (CRD) with seven treatments consisting of various potting media composition viz., T₁ (Sand + Vermicompost + Biochar 1:1:0.1 v/v/v), T₂ (Sand + Vermicompost + Biochar 1:1:0.2 v/v/v), T₃ (Sand + Vermicompost + Biochar 1:1:0.3 v/v/v), T₄ (Cocopeat + Biochar 1:0.1 v/v), T₅ (Cocopeat + Biochar 1:0.2 v/v), T₆ (Cocopeat + Biochar 1:0.3 v/v), T₇ (Cocopeat + Vermicompost 2:1 v/v). The experiment was replicated thrice, and the treatment combinations were filled in pots having a size of 2.5 L. The plants were grown under consistent conditions, with uniform light, water, and nutrient levels to ensure environmental factors remained standardized. All the morphological parameters were measured at the start of the experiment, at 30 days, 60 days, and at the end of the experiment, i.e., 90 days. Whereas the physiological parameters were observed at 60 and 90 days.

The plant height from base to tip, longest root length were measured with meter scale, number of leaves and number of roots per plant were counted manually, total plant leaf area was measured using *Biovis* digital leaf area meter, fresh weight of shoot, root weight and leaf weight were measured using weighing balance, plants were dried using the hot air oven at 65° C ± 1 and then dry weight of shoot, root weight, leaf weight were measured using weighing balance, longest root diameter, flower bud diameter and flower diameter were measured using digital *vernier calliper*, Net Assimilation Rate (g m⁻² day⁻¹) was computed with the help of formula.

$$NAR = \frac{W - W_1}{t_2 - t_1} \times \frac{\log e A_2 - \log e A_1}{A_2 - A_1}$$

Where, W₁ is dry weight of plant at time t₁, W₂ is dry weight of plant at time t₂, A₁ is total leaf area of plant at time t₁, A₂ is total leaf area of plant at time t₂, t₁ = initial days, t₂ is final days.

Relative growth rate (RGR) was computed with the help of following formula

$$RGR = \frac{\ln W_2 - \ln W_1}{t_2 - t_1}$$

Where, W₁ is dry weight of plant at time t₁, W₂ is dry weight of plant at time t₂, t₁ = initial days, t₂ is final days.

Root to shoot ratio was calculated using formula

$$\text{Root to shoot ratio} = \frac{\text{Dry weight of root}}{\text{Dry weight of shoot}}$$

Results and Discussion

Shoot parameters

Plant height

As presented in Table 1, plant height was significantly influenced by different growing media maximum plant height recorded in T₆ (Cocopeat + Biochar 1:0.3 v/v) (10.86 cm, 15.49 cm and 25.31 cm) at 30, 60 and 90 days after planting, respectively. Minimum plant height was recorded in T₇ (Cocopeat + Vermicompost 2:1 v/v) (6.47 cm, 8.91 cm and 11.59 cm) at 30, 60 and 90 days. This might be due to biochar which alter the physical properties of the media, including increasing aeration and water holding capacity in soil which might have contributed in increase of shoot length [18]. Similar results were reported in *Abelmoschus esculentus* [14], *Dianthus chinensis* [3] and Chinese Rose [22].

Number of leaves

As presented in Table 1 and Fig.1, plants grown with T₆ (Cocopeat + Biochar 1:0.3 v/v) potting media resulted in the maximum total number of leaves per plant (398.25, 649.05 and

765.68) at 30, 60 and 90 days after planting. While the minimum total number of leaves per plant (126.83, 215.39 and 262.52) was obtained in T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60, and 90 days after planting, respectively.

Total Leaf Area

As presented in Table 1, the maximum total leaf area of the plant was recorded from plants grown in T₆ (Cocopeat + Biochar 1:0.3 v/v) (40.73 cm², 44.21 cm² and 46.37 cm²) at 30, 60 and 90 days after planting. Whereas, minimum total leaf area was observed in T₇ (Cocopeat + Vermicompost 2:1 v/v) (19.09 cm², 22.37 cm², and 24.60 cm²) at 30, 60, and 90 days, respectively.

Number of leaves per plant and total leaf area were found to be maximum in Cocopeat + Biochar 1:0.3 v/v, which may be attributed to the fact that biochar usually, when used as a medium with cocopeat, has good physiochemical properties, especially bulk density, which was recorded lowest as compared to other treatments. The results are in close conformity with the findings reported for *Calathea rotundifolia* cv. *Fasciata* [25], *Rosa rugosa* [13] and *Calophyllum inophyllum* seedlings [16].

Fresh and Dry Weights of Shoot, Root, and Leaf

Fresh weight of the shoot

As presented in Table 2, the fresh weight of the shoot was significantly influenced by the different growing media. Among different growing media, T₆ (Cocopeat + Biochar 1:0.3 v/v) produced the maximum fresh weight of shoot (56.24 g/g/plant, 108.36 g/g/plant, and 120.20 g/g/plant) at 30, 60, and 90 days after planting, respectively. While the minimum dry weight of shoot was observed in T₇ (Cocopeat + Vermicompost 2:1 v/v) (25.88 g/g/plant, 38.14 g/g/plant, and 49.29 g/g/plant) at 30, 60 and 90 days, respectively.

Dry weight of the shoot

As presented in Table 2, the maximum dry weight of the shoot was recorded from the plants grown in T₆ (Cocopeat + Biochar 1:0.3 v/v) (6.75 g/g/plant, 10.50 g/g/plant, and 12.25 g/g/plant) at 30, 60, and 90 days after planting. While the minimum dry weight of shoot was observed in T₇ (Cocopeat + Vermicompost 2:1 v/v) (3.15 g/g/plant, 3.75 g/g/plant and 5.01 g/g/plant) at 30, 60, and 90 days, respectively.

Fresh weight of root

As presented in the Table 2, the highest value of fresh weight of root (2.97 g/g/plant, 7.21 g/g/plant and 7.63 g/g/plant) was recorded in T₆ (Cocopeat + Biochar 1:0.3 v/v) at 30, 60 and 90 days after planting. Whereas, lowest fresh weight of root was observed in T₇ (Cocopeat + Vermicompost 2:1 v/v) (0.73 g/g/plant, 2.80 g/g/plant and 2.96 g/g/plant) at 30, 60 and 90 days, respectively.

Dry weight of root

As presented in Table 2, petunia grown under T₆ (Cocopeat + Biochar 1:0.3 v/v) was resulted in significantly maximum root dry weight of root (0.59 g/g/plant, 1.44 g/g/plant, and 1.52 g/g/plant) at 30, 60, and 90 days after planting. While the minimum dry weight of root (0.15 g/g/plant, 0.56 g/g/plant and 0.59 g/g/plant) was found in T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60 and 90 days after planting.

Fresh weight of leaf

As presented in Table 2, the maximum fresh weight of leaf (37.49 g/g/plant, 57.09 g/g/plant and 70.16 g/g/plant) was

recorded in T₆ (Cocopeat + Biochar 1:0.3 v/v) at 30, 60 and 90 days, respectively. While, the minimum fresh weight of leaf (17.25 g/g/plant, 20.67 g/g/plant and 26.67 g/g/plant) was found in T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60, and 90 days after planting.

Dry weight of leaf

As presented in Table 2, the highest dry weight of leaf (5.35 g/g/plant, 9.51 g/g/plant, and 11.69 g/g/plant) was recorded in T₆ (Cocopeat + Biochar 1:0.3 v/v) at 30, 60 and 90 days respectively. However, the minimum dry weight of leaf (2.47 g/g/plant, 3.45 g/g/plant and 4.44 g/g/plant) was noted in T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60 and 90 days after planting.

This may be due to biochar's fine-grained, highly porous structure, which improves substrate conditions by enhancing nutrient release, increasing water retention and effectively reducing media degradation [25]. Incorporating biochar helps equilibrate water content and increase the availability of water for plants as well as improves the air porosity and structure of the substrate, which leads to a positive impact on the dry weight of shoots, leaves and roots [11]. Our observations concur with those reported for petunia and pelargonium [2], *Calophyllum inophyllum* [16], jackfruit[15], and *Polianthes tuberosa* [4].

Root parameters

Root length

As presented in Table 3, the longest root length (22.17 cm) was recorded in treatment T₅ (Cocopeat + Biochar at 1:0.2 v/v) at 30 days after planting, whereas at 60 and 90 days, the maximum root length (57.97 cm and 60.33 cm) was observed in treatment T₆ (Cocopeat + Biochar at 1:0.3 v/v). The shortest root length (13.19 cm, 20.27 cm, 23.67 cm) was noted in potting media T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60, and 90 days, respectively.

Number of Roots per Plant

As presented in Table 3 and Fig.2, the maximum number of roots per plant (25.61, 27.83, 30.53) was found with the growing media T₆ (Cocopeat + Biochar at 1:0.3 v/v) at 30, 60, and 90 days, respectively. However, the minimum number of roots per plant (11.17, 12.83, 15.83) was obtained with T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60, and 90 days after planting.

Root diameter

As presented in Table 3, among different growing media, maximum root diameter (0.90 mm, 0.95 mm, and 0.98 mm) was found in T₆ (Cocopeat + Biochar at 1:0.3 v/v) at 30, 60, and 90 days after planting. While the minimum root diameter (0.53 mm, 0.57 mm, and 0.60 mm) was reported in T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60, and 90 days after planting.

Biochar added to the potting mixture had increased the root development it might be due to its ability to reduce soil compaction, increase aggregation of soil, and improve soil aeration and water retention, which assist fine root growth [15]. By applying the biochar, it improves the soil void ratio and optimizes the soil structure, thus promoting the healthy growth of plant roots [22]. Since biochar lowered soil bulk density, thereby increasing soil porosity and soil aeration, it may have positive effects on roots. Furthermore, it improved the root length and number of roots [8].

Flowering parameters

Flower Bud Diameter

As presented in Table 4, the flower bud diameter (5.91 mm) was found to be maximum in plants grown in T₆ (Cocopeat + Biochar at 1:0.3 v/v). The minimum flower bud diameter (4.77 mm) was noted in T₇ (Cocopeat + Vermicompost 2:1 v/v) at the full blooming stage.

Flower diameter

As presented in Table 4 and Fig. 3, during the full blooming stage, T₆ (Cocopeat + Biochar at 1:0.3 v/v) was noted to have the maximum flower diameter (5.78 cm). The minimum flower diameter (4.45 cm) was noted in T₇ (Cocopeat + Vermicompost 2:1 v/v) at the full blooming stage.

Potting media T₆ (Cocopeat + Biochar @ 1:0.3 v/v) excelled all other treatment with respect flower bud diameter (5.91 mm) and flower diameter (5.78 cm) these enhancements can be attributed to various factors such as improved soil pH, nutrient availability, water retention and microbial activity facilitated by biochar incorporation in chilli [7]. Higher rates of biochar resulted in an increase in curd diameter, which might be due to the enhanced nutrient retention, improved nutrient release, increased microbial activities, and better soil structure provided by higher rates of biochar [10]. Our findings align well with those reported for gerbera [24], marigold [9], and Chinese Rose [3,22].

Physiological Parameters

Net Assimilation Rate

As presented in Table 5, the net assimilation rate (NAR) was significantly influenced by different growing media. During 60 and 90 days after planting, among various potting media, T₆ (Cocopeat + Biochar at 1:0.3 v/v) resulted in the maximum net assimilation rate (0.67×10^{-3} g m⁻² day⁻¹ and 0.53×10^{-3} g m⁻² day⁻¹). While a minimum net assimilation rate (0.14×10^{-3} g m⁻² day⁻¹ and 0.11×10^{-3} g m⁻² day⁻¹) was observed in T₇ (Cocopeat + Vermicompost 2:1 v/v) at 60 and 90 days after planting.

Results revealed that the maximum net assimilation rate was recorded in the treatment Cocopeat + Biochar 1:0.3 v/v (T₆). The probable reason might be that the addition of cocopeat in the media increases the porosity of the potting mixture, which helps to keep the soil loose and airy [23]. Incorporating biochar helps equilibrate water content and increase the availability of water for plants, while also improving the air porosity and structure of the substrate [11].

Relative Growth Rate

As presented in Table 5, during 60 and 90 days after planting, maximum relative growth rate (2.923×10^{-2} g g⁻¹ day⁻¹ and 1.935×10^{-2} g g⁻¹ day⁻¹) was recorded in T₆ (Cocopeat + Biochar at 1:0.3 v/v). While a minimum relative growth rate (1.112×10^{-2} g g⁻¹ day⁻¹ and 0.643×10^{-2} g g⁻¹ day⁻¹) was observed in the T₇ (Cocopeat + Vermicompost 2:1 v/v) at 60 and 90 days, respectively.

Significantly higher relative growth rate (RGR) has been noted in (T₆) media. The combination of cocopeat and biochar creates an optimized root environment, supporting both physical and biochemical factors needed for plant growth. The media composition has a positive impact on plant growth, especially by improving textural and structural properties that enhance nutrient availability [17]. This leads to increased plant growth, resulting in more plant stored material, thereby recording a higher relative growth rate (RGR).

Root shoot ratio

As presented in Table 5 and Fig. 4, among different potting media, the minimum root shoot ratio (0.225, 0.201, and 0.154) was recorded in T₆ (Cocopeat + Biochar at 1:0.3 v/v) at 30, 60, and 90 days after planting. The maximum root shoot ratio (0.578, 0.402, and 0.322) was noticed in T₇ (Cocopeat + Vermicompost 2:1 v/v) at 30, 60, and 90 days after planting.

Results revealed that the lowest root shoot ratio was obtained in cocopeat and biochar-based media. This might be due to the improved physical and chemical conditions of the growing media and thus, a favoured increase in the dry matter of the shoot. The highest root to-shoot ratio was obtained in the control. A probable reason may be that poor nutrient supply by the media may have reduced the growth of the shoot and resulted in a high root to-shoot ratio. A lower root-to-shoot weight ratio in plants treated with biochar may indicate that less energy is needed for root growth as the improved soil fertility and structure facilitate easier access to nutrients and water around the roots, allowing more resources to be directed to shoot growth and reproduction [19]. Our data support the findings for *Calophyllum inophyllum* seedlings [16].

Table 1: Effect of different potting media on growth parameters of *Petunia hybrida*

Shoot Characteristics												
Treatments	Plant height (cm)			Number of Leaves			Total leaf area (cm ²)			30 Days	60 Days	90 Days
	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days			
T ₁	7.66	10.65	14.23	247.93	344.75	367.61	31.94	34.96	37.30			
T ₂	7.12	9.96	12.96	146.39	250.65	335.33	25.33	28.50	31.10			
T ₃	6.66	9.44	12.30	133.52	226.83	283.01	20.99	24.49	27.04			
T ₄	8.86	14.93	20.62	279.73	516.22	582.13	35.85	39.71	42.48			
T ₅	10.38	15.47	24.36	363.08	596.88	697.18	38.46	42.39	44.79			
T ₆	10.86	15.49	25.31	398.25	649.05	765.68	40.73	44.21	46.37			
T ₇	6.47	8.91	11.59	126.83	215.39	262.52	19.09	22.37	24.60			
SEm (±)	0.21	0.31	0.43	6.82	11.49	10.99	0.59	0.55	0.59			
CD at 5 %	0.65	0.96	1.32	20.89	35.22	33.65	1.82	1.68	1.80			
CV (%)	4.45	4.47	4.31	4.88	4.98	4.04	3.41	2.80	2.82			

Table 2: Influence of various potting media on fresh and dry biomass of *Petunia hybrida*

Fresh and Dry Weights of Shoot, Root and Leaf																		
Treatments	Fresh weight of shoot (g/g/plant)			Dry weight of shoot (g/g/plant)			Fresh weight of root (g/g/plant)			Dry weight of root (g/g/plant)			Fresh weight of leaf (g/g/plant)			Dry weight of leaf (g/g/plant)		
	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days
T ₁	30.60	65.21	87.48	3.83	6.50	7.63	0.84	3.52	4.54	0.17	0.70	0.91	20.40	35.78	41.22	2.91	5.81	6.79
T ₂	29.49	57.35	77.78	3.69	6.00	6.50	0.82	3.17	3.82	0.16	0.64	0.76	19.66	33.28	37.67	2.81	5.39	5.81
T ₃	28.73	46.37	67.58	3.59	4.75	5.86	0.80	2.86	3.18	0.15	0.57	0.63	19.15	28.52	31.53	2.74	4.23	5.25
T ₄	41.15	75.97	97.33	5.01	8.21	9.56	1.44	6.54	6.95	0.29	1.30	1.39	27.43	46.39	49.76	3.91	7.73	8.29
T ₅	49.28	85.78	102.53	6.46	9.21	10.25	2.62	6.92	7.25	0.52	1.38	1.45	32.85	49.57	56.14	4.84	8.26	9.35
T ₆	56.24	108.36	120.20	6.75	10.50	12.25	2.97	7.21	7.63	0.59	1.44	1.52	37.49	57.09	70.16	5.35	9.51	11.69
T ₇	25.88	38.14	49.29	3.15	3.75	5.01	0.73	2.80	2.96	0.15	0.56	0.59	17.25	20.67	26.67	2.47	3.45	4.44
SEm (±)	1.47	2.80	2.61	0.20	0.26	0.33	0.04	0.11	0.09	0.01	0.02	0.02	0.98	0.95	1.61	0.38	0.17	0.26
CD at 5 %	4.49	8.57	8.00	0.63	0.78	1.01	0.13	0.35	0.28	0.03	0.07	0.06	2.99	2.91	4.94	0.12	0.51	0.80
CV (%)	6.80	7.11	5.26	7.79	6.30	7.06	5.11	4.24	3.12	5.10	4.30	3.11	6.80	4.24	6.24	6.01	4.55	6.14

Table 3: Effect of different potting media on root parameters of *Petunia hybrida*

Treatments	Root length (cm)			Number of roots per plant			Root diameter (mm)		
	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days	30 Days	60 Days	90 Days
T ₁	13.49	28.00	30.63	15.46	17.33	21.91	0.74	0.77	0.83
T ₂	17.78	22.77	24.65	13.12	14.67	18.04	0.68	0.76	0.80
T ₃	15.76	21.08	23.68	12.30	14.59	17.00	0.65	0.70	0.74
T ₄	18.35	35.25	41.02	17.56	19.95	23.11	0.83	0.87	0.90
T ₅	22.17	41.85	52.05	20.53	22.83	25.99	0.86	0.89	0.92
T ₆	21.30	57.97	60.33	25.61	27.83	30.53	0.90	0.95	0.98
T ₇	13.19	20.27	23.67	11.17	12.83	15.83	0.53	0.57	0.60
SEm (±)	0.67	1.27	1.46	0.57	0.65	0.71	0.02	0.02	0.01
CD at 5 %	2.05	3.89	4.48	1.76	2.00	2.17	0.05	0.06	0.04
CV (%)	6.67	6.79	6.92	6.02	6.09	5.64	3.82	4.35	3.28

Table 4: Influence of different potting on flowering parameters of *Petunia hybrida*

Treatments	Flower Bud Diameter (mm)	Flower Diameter (cm)
T ₁	5.24	5.12
T ₂	5.06	4.89
T ₃	4.99	4.56
T ₄	5.37	5.29
T ₅	5.79	5.45
T ₆	5.91	5.78
T ₇	4.77	4.45
SEm (±)	0.13	0.15
CD at 5 %	0.39	0.46
CV (%)	4.12	5.08

Table 5: Influence of different potting on physiological parameters of *Petunia hybrida*

Treatments	Net assimilation rate (×10 ³ g m ⁻² day ⁻¹)		Relative growth rate (×10 ⁻² g g ⁻¹ day ⁻¹)		Root shoot ratio		
	30 Days	60 Days	30 Days	60 Days	30 Days	60 Days	90 Days
T ₁	0.34	0.22	1.654	1.132	0.378	0.298	0.212
T ₂	0.32	0.17	1.533	1.102	0.442	0.312	0.256
T ₃	0.22	0.15	1.293	0.828	0.451	0.352	0.295
T ₄	0.39	0.28	1.987	1.421	0.352	0.248	0.198
T ₅	0.56	0.42	2.561	1.162	0.252	0.212	0.165
T ₆	0.67	0.53	2.923	1.935	0.225	0.201	0.154
T ₇	0.14	0.11	1.112	0.643	0.578	0.402	0.322
SEm (±)	0.03	0.04	0.014	0.046	0.008	0.005	0.004
CD at 5 %	0.09	0.12	0.043	0.139	0.025	0.016	0.014
CV (%)	6.61	5.63	5.32	4.78	6.01	6.99	7.01

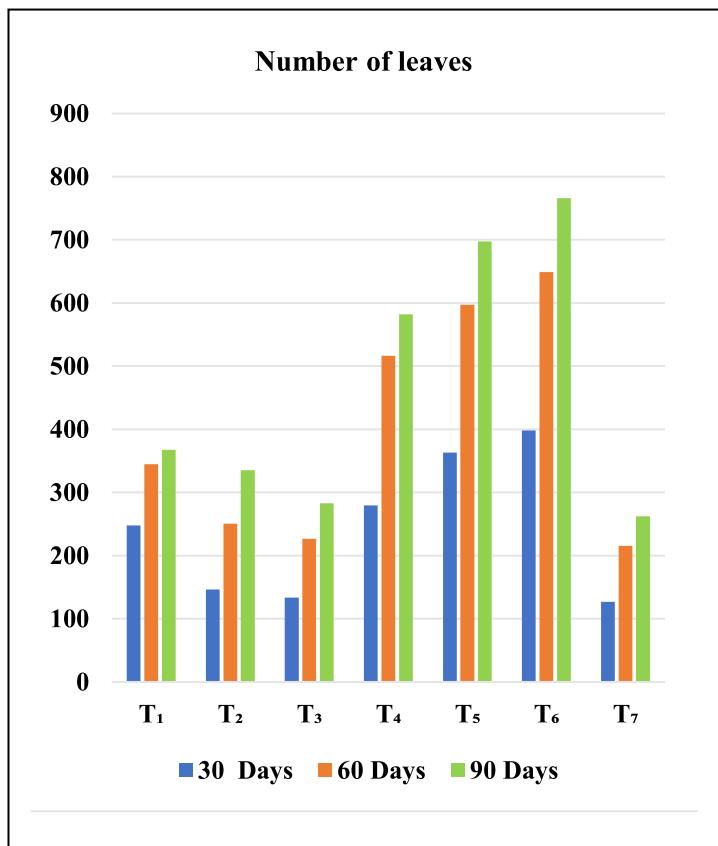


Figure 1: Effect of different potting media on total number of leaves per plant of *Petunia hybrida*

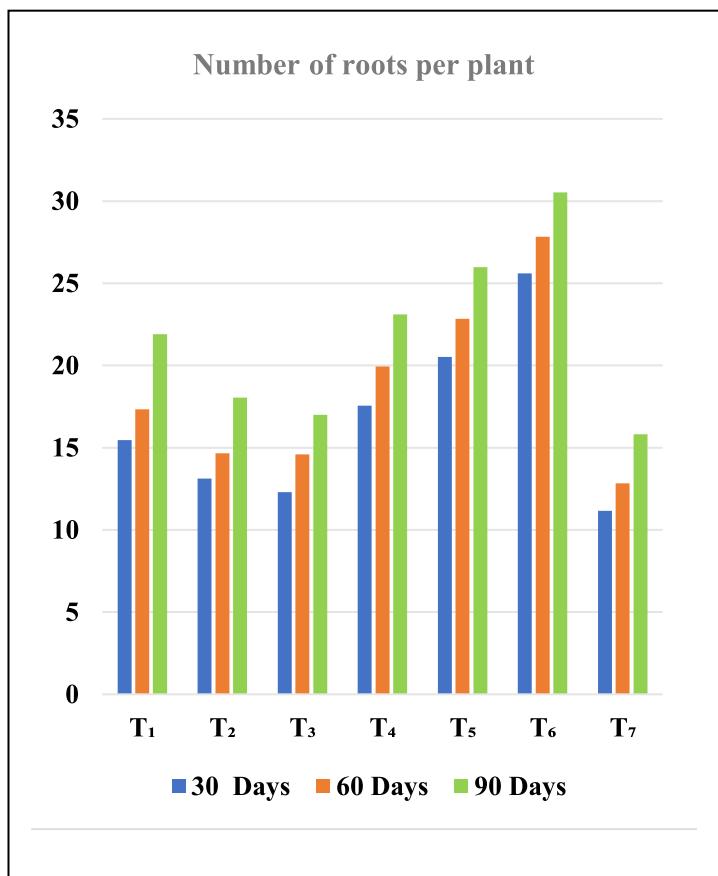


Figure 2: Effect of different potting media on number of roots per plant of *Petunia hybrida*

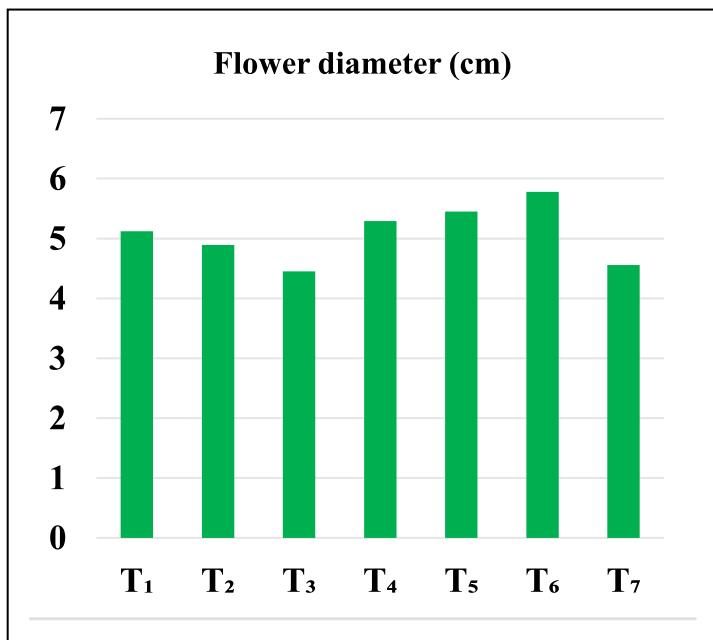


Figure 3: Effect of different potting media on flower diameter (cm) of *Petunia hybrida*

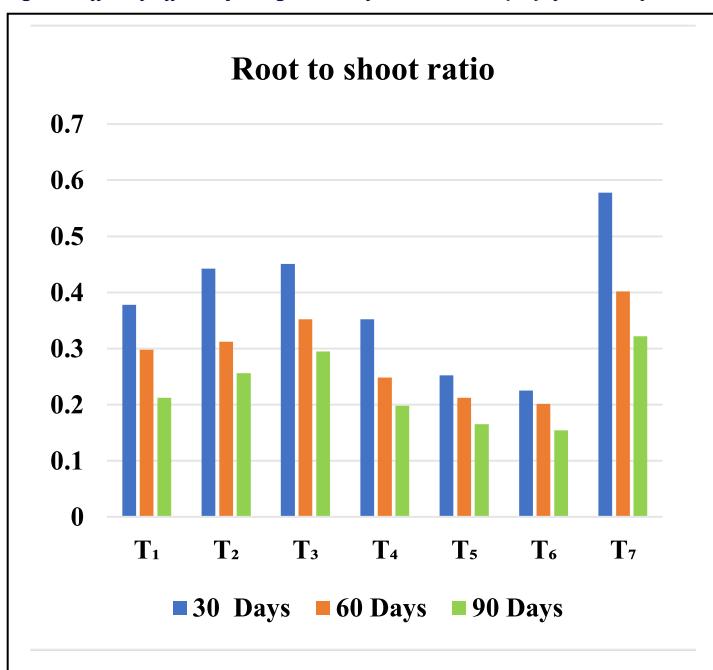


Figure 4: Effect of different potting media on root shoot ratio of *Petunia hybrida*

Conclusion

From the results of the present experiment, it can be concluded that *Petunia hybrida* grown in Cocopeat + Biochar (1:0.3 v/v) potting media was found to be better for growth and flowering.

Future scope of study: Future research could focus on testing the effectiveness of the best performing biochar-based potting medium (Cocopeat + Biochar 1:0.3 v/v) under real field and greenhouse conditions, assessing its influence on flowering, yield, and overall plant performance. Investigating nutrient dynamics, water retention capacity, and microbial activity within different biochar-based mixtures may provide a deeper understanding of their role in promoting plant growth. Expanding this approach to other ornamental and horticultural crops could help determine its broader applicability. Additionally, evaluating the economic feasibility and environmental benefits of using biochar-based media on a commercial scale would support its practical adoption by growers.

Acknowledgement: We express our sincere gratitude to ASPEE College of Horticulture, Navsari Agricultural University, Navsari, Gujarat, for their continuous support, guidance, and for providing the essential facilities required to successfully carry out this research work.

Conflict of interest: There is no conflict of interests among any authors.

References

1. Abo-Rezq H, Albaho M, Thomas B. Effect of sand in growing media on selected plant species. *Eur J Res.* 2009;26(4):618-23.
2. Alvarez JM, Pasian C, Lal R, Lopez Nunez R, Fernandez Martinez M. Vermicompost and biochar as substitutes of growing media in ornamental-plant production. *J Appl Hortic.* 2017;19(3):205-14.
3. Alwan SH, Owen MA, Omar OA, Salih ZK. Effect of biochar application and foliar application of gibberellin and cytokinin on growth and flowering of Chinese carnations *Dianthus chinensis*. *IOP Conf Ser Earth Environ Sci.* 2023;1158(4):042016.
4. Ayyat AM, Hewidy MR, Gahory A, Abdel-Mola M. Biochar combined with foliar application of chelated and nano iron enhanced qualitative and quantitative attributes of *Polianthes tuberosa* L. plants. *Egypt J Hortic.* 2023;50(1):17-33.
5. Baiamonte G, De Pasquale C, Marsala V, Cimo G, Alonso G, Crescimanno G, Conte P. Structure alteration of a sandy-clay soil by biochar amendments. *J Soils Sediments.* 2015;15:816-24.
6. Bailey LH. *Manual of Cultivated Plants*. New York: Macmillan; 1951. p.1116.
7. Bramarambika S, Mamatha B, Jakir Hussain KN, Srinivas Reddy KM, Desai N. The effect of coconut shell biochar on the growth and yield of chilli (*Capsicum annuum* L.) in acidic Alfisols soil. *J Adv Biol Biotechnol.* 2024;27(7):203-11.
8. Chang Y, Rossi L, Zotarelli L, Gao B, Shahid MA, Sarkhosh A. Biochar improves soil physical characteristics and strengthens root architecture in muscadine grape (*Vitis rotundifolia* L.). *Chem Biol Technol Agric.* 2021;8(1):7.
9. Cox D. Response of 'First Lady' marigolds to plant extract fertilizers, granular organic fertilizers and biochar. *Floral Notes.* 2013;24(1):5-8.
10. Dikshant C. Effect of biochar on the soil properties, yield and quality of cauliflower in low hills of Himachal Pradesh [MSc thesis]. Solan (India): Dr Yashwant Singh Parmar University of Horticulture and Forestry; 2024. 54 p.
11. Dispenza V, De Pasquale C, Fascella G, Mammano MM, Alonso G. Use of biochar as peat substitute for growing substrates of *Euphorbia x lomi* potted plants. *Span J Agric Res.* 2016;14(4):908.
12. Evans MR, Konduru S, Stamps RH. Source variation in physical and chemical properties of coconut coir dust. *HortScience.* 1996;31(6):965-7.
13. Fascella G, Mammano MM, Angiolillo FD, Roushphal Y. Effects of conifer wood biochar as a substrate component on ornamental performance, photosynthetic activity and mineral composition of potted *Rosa rugosa*. *J Hortic Sci Biotechnol.* 2018;93(5):519-28.
14. Gangadhar M. Evaluation and performance of biochar on okra (*Abelmoschus esculentus* L.) [MSc thesis]. Bagalkot (India): University of Horticultural Sciences; 2018. 84 p.
15. Jasmita BG, Honnabryaiah MK, Anil Kumar S. Effect of enriched biochar on seedlings growth of jackfruit. *J Pharm Innov.* 2021;10(5):248-51.
16. Jayalakshmi HG. Effect of rice husk biochar on growth of *Calophyllum inophyllum* seedlings [MSc thesis]. Bengaluru (India): University of Agricultural Sciences; 2018. 29 p.
17. Kalyan PP, Kumar TS, Sreenivas M, Ramesh KV. Influence of organic manures and foliar application of Arka Citrus Special on the growth of buddlings of sweet orange. *J Adv Biol Biotechnol.* 2024;27(4):102-9.
18. Kanchan I. Response of watermelon (*Citrullus lanatus* Thunb.) var. Ayesha to crop residue biochars [MSc thesis]. Dapoli (India): Dr Balasaheb Sawant Konkan Krishi Vidyapeeth; 2023. 63 p.
19. Karim MR, Biswas S, Halim MA, Ahmed R. Biochar enhances seed germination and crop early growth for sustainable agriculture in Bangladesh. *PLoS One.* 2025;20(3):0320005.
20. Kavitha P. Vermicomposting: A leading feasible entrepreneurship. In: Agricultural Microbiology Based Entrepreneurship: Making Money from Microbes. Singapore: Springer Nature; 2022. p.289-306.
21. Knapp S. Floral diversity and evolution in the Solanaceae. In: Cronk QCB, Bateman RM, Hawkins JA, editors. *Developmental Genetics and Plant Evolution*. London: Taylor and Francis; 2002. p.97-267.
22. Liyuan M, Zhou H, Wang J, Sun S, Yang H, Zhang N, Bao L. Effect of modified biochar with organic fertilizer on the growth and development of Chinese rose. *Adv Biosci Biotechnol.* 2024;15(6):344-59.
23. Sharma R, Bhatia S, Dhiman SR. Production of potted petunias (*Petunia hybrida*) as affected by growing media and Jeevamrit application. *Int J Farm Sci.* 2023;13(2):87-93.
24. Sindhu SS, Gholap DB, Singh MC, Dhiman MR. Effect of medium amendments on growth and flowering in gerbera. *Indian J Hortic.* 2010;67(4):391-4.
25. Tian Y, Sun X, Li S, Wang H, Wang L, Cao J, Zhang L. Biochar made from green waste as peat substitute in growth media for *Calathea rotundifolia* cv. Fasciata. *Sci Hortic.* 2012;143:15-8.
26. Toma F. *Floriculture and Floral Art*. Vol 2. Bucharest (Romania): Invel Multimedia; 2009. p.232.