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( ABSTRACT

This study tackles the important issue of plant conservation by highlighting the need to monitor vegetation health and diversity in
agroecosystems. These areas face threats from environmental pressures like pollution, habitat loss, and climate change, which
impact plant stability. To improve vegetation assessment, this research uses remote sensing tools, specifically the Normalized
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI), to create strong LAl estimation models for wheat. Field experiments
conducted over two crop seasons at G.B. Pant University employed a Split-Split-Plot Design with different sowing dates, irrigation
levels, and varieties to capture a wide range of canopy conditions. A variety of regression models, including linear, exponential,
logarithmic, power, and sigmoid models, were created and assessed. Machine-learning methods, such as Support Vector Regression
and Random Forest Regression, were also explored to improve predictive accuracy. The modeling faced challenges due to NDVI
saturation at high canopy density, seasonal changes in microclimate, and complex interactions among treatments. These issues
required careful calibration and validation of the models. Results showed that non-linear models, especially sigmoid regression, best
represented the NDVI-LAI relationship, achieving high coefficients of determination (R? = 0.8625 for training and 0.9213 for
validation). Meanwhile, machine-learning models also performed well with complex data structures. Overall, the study provides
valuable insights into crop monitoring using remote sensing, offering better tools for precision agriculture, efficient water use, and
long-term plant biodiversity conservation.

Keywords: NDVI, LAI, agroecosystem, Regression models, Machine Learning methods, remote sensing, precision agriculture,

biodiversity conservation, etc.
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Introduction

Plant conservation is a vital global concern that has garnered
considerable attention recently [25]. The diversity and health of
plant species are essential to the world's ecosystems, whether
they are terrestrial, aquatic, or marine [35]. At the most basic
level, primary producers fulfill the function of effectively
starting all food webs and providing the basis for many human-
used ecological services, facilitating all ecological processes,
and functioning in life support for humans. With this in mind,
the conservation status of the variety of plants in any ecosystem
becomes critical. The world is facing a decline in the variety of
plants and with many causes of extinction of some plants and
the endangerment of many more [1]. The extinction of plants
causes a loss, and this is a problem considering the many
functions plants provide, and the many benefits plants provide
to humans, like the stabilization of soil, the provision of oxygen,
and the sequestration and purification of water.
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The observation of conserved crops provides the foundation for
stress detection in the plants in order to initiate loss prevention
action when stress is caused by disease or hostile
environmental conditions. Crop monitoring also helps to
enhance crop yields, maximize the usage of resources, and
ultimately ensure food security. Crop monitoring using sensing
has progressed more rapidly due to technological innovation
[30].

Remote sensing technology is largely unopposed as a means for
monitoring crops. It is a non-intrusive means of access,
contemporary and extensive in coverage. The physical structure
of plant canopies plays an important role in regulating
ecosystems, as it modifies energy, moisture, and gas exchange
between the soil, the atmosphere, and vegetation. The canopy's
complicated structure includes the leaf area index (LAI), which
is the most important of the several structural variables, and is
defined as the total area of leaves, on one side of the leaves,
which is for photosynthesis, and is per unit area of the ground
within the canopy [2][8]. It is a dimensionless measure, but it
very well approximates the density of the photosynthetic
apparatus and functions as a measure of the canopy structure
and function. The LAI value most probably determines the
fraction of solar energy incident on the canopy in the
photosynthetically active domain (PAR, ~ 400-700 nm) that is
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captured for photosynthesis [16][29]. Higher LAI values
enhance the Gross Primary Production (GPP) of the ecosystem,
the total carbon captured through the photosynthesis process,
as well as the chances of chlorophyll molecules to intercept
photons to power their photosynthesis. This association,
frequently defined in terms of light extinction rules similar to
the Beer-Lambert Law, regulates the degree of light energy fixed
in chemical form within the canopy. Increasing LAI does
augment light capture, but the influence ultimately reaches an
asymptote at high levels of LAI due to growing self-shading by
lower leaves. LAl hasa strongimpact on Net Primary Production
(NPP), the net gain of biomass after subtracting respiration by
plants, which is the foundation of the food web of the ecosystem
and the potential for carbon sequestration. LAI dictates the total
surface area available for transpiration, the process by which
water vapor is released through microscopic leaf pores called
stomata [4][26]. Consequently, it significantly influences total
canopy conductance to water vapor and is a major determinant
of ecosystem-level evapotranspiration (ET). This profoundly
impacts the local and regional water balance, affecting soil
moisture depletion rates, runoff generation, and atmospheric
humidity. This control over water vapor flux also means LAI is
crucial in partitioning incoming net radiation (solar energy
absorbed by the surface) into latent heat flux (energy consumed
during transpiration, leading to evaporative cooling) and
sensible heat flux (energy that directly heats the air). Canopies
with greater LAI tend to have more evaporative cooling and
lower surface temperatures than thinly vegetated sites under
the same conditions, thereby affecting microclimate and even
regional climate regimes. Importantly, LAI is not a fixed
characteristicbuta dynamic measure of the complex interaction
between vegetation and its environment [2][33]. It has clear
phenological patterns, following seasonal cycles of growth, like
the emergence of leaves in spring and autumn senescence in
deciduous species. Its size combines the impacts of resource
availability with restrictions in light, water, or nutrients, usually
limiting maximum leaf area development or causing decreased
leaf longevity. LAI is sensitive to environmental stress (e.g.,
drought, heat waves, and air pollution) and disturbance (e.g.,
fire, insects, disease, logging, or grazing), typically through
physiological mechanisms such as stomatal closure, early
senescence of leaves, or defoliation. Tracking these changes in
LAI therefore delivers an informative, integrated measure of
vegetation health, stress, phenological timing, and ecosystem
dynamics and productivity potential.

The Normalized Difference Vegetation Index (NDVI) is a
radiometric indicator of photosynthetic activity based on the
differential absorption of red (600-700 nm) and near-infrared
(NIR, 700-1300 nm) radiation by vegetation canopies [32]. The
NDVI formula, NDVI = (pNIR - pred)/(pNIR + pred), in which p is
surface reflectance, takes advantage of chlorophyll's high
absorption of the red end of the spectrum and high NIR
reflectance from leaf mesophyll caused by internal scattering
[11]. NDVI displays asymptotic behaviors with important
biophysical variables: Itis closely related to leaf area index (LAI)
up to thresholds of saturation (LAI = 3-4) [3], displays a near-
linear relationship with a fraction of absorbed
photosynthetically active radiation (fAPAR) for NDVI < = 0.7
[27], and acts as a substitute for canopy chlorophyll
concentration after correction from structural effects [14].
Although extensively applied in ecological surveys and
productivity assessment [34], NDVI has some limitations, such
as saturation in closed canopies (NDVI > 0.7), soil background

reflectance sensitivity (especially in arid environments), and
atmospheric interference effects [22]. These limitations have
spurred the creation of amended indices such as the Soil-
Adjusted Vegetation Index (SAVI) [19], Enhanced Vegetation
Index (EVI) [20], and Wide Dynamic Range Vegetation Index
(WDRVI) [13] that include more correction factors but retain
NDVI's underlying biophysical foundation.

The relationship between LAl and NDVI is one of the most basic
forms of remote sensing relationships of vegetation, where LAI
is proxied by NDVI spectrally, because both rely on canopies'
lightinterception [3]. The theoryis based on adapted versions of
the Beer-Lambert law, where LAI affects the light attenuation
through the canopy, and NDVI represents the spectrally signed
absorption [27]. It has been shown that there is an empirical
asymptoticand nonlinear relationship, having: (1) low LAI (0-2)
and linear NDVI rise sensitivity of approximately 0.1-0.15 units
per LAl unit increase; (2) mid LAI (2-4) diminishing sensitivity
because of mutual shading; and (3) saturation at high LAI (>4-6)
where added leaf layers contribute little to the NDVI [6]. The
LAI-NDVI correlation is highly predictable by biome, where
coniferous stands saturate quickly on NDVI, while broad leaf
canopies take longer to saturate, showing the contraries in leaf
angle distribution and clumping [9]. The LAI-NDVI correlation is
also modulated by canopy structure factors such as the leaf
inclination angle distribution (planophile vs. erectophile
canopies) and foliage clumping index that influence light
penetration and scattering [23]. Current methods overcome
saturation constraints using hybrid techniques that blend NDVI
with alternative spectral bands (e.g., red-edge reflectance) or
physical approaches that include canopy radiative transfer
theory [21].

Materials and Methods

Experimental site:

Wheatis widely grown in the rabi season throughout the Udham
Singh Nagar (US Nagar) district of Uttarakhand. A field
experiment was conducted at C-6, N.E. Borlaug Crop Research
Centre, G.B. Pant University of Agriculture and Technology,
Pantnagar, Udham Singh Nagar, which falls in the Tarai region of
the Kumaon division. Geographically, the region is located
between 28°53' to 29°23’ N latitude and 78°45' to 80°08’ E
longitude. The area has a climate varying from subtropical to
humid subtropical. Summers, particularly in April and May, are
generally warm, followed by the southwest monsoon that
delivers most of the annual rains from mid-June to late
September. Winter arrives by late October and lasts through to
March, yielding favorable thermal conditions for winter crops
such as wheat. The Tarai belt is characterized by deep, fertile
alluvial soils and rich water resources, making it extremely
suitable for wheat production. The good agro-climatic
conditions, combined with well-established irrigation facilities,
provide for maximum growth and yield of the wheat crop in this
region. This makes the region an important contributor to
wheat production in Uttarakhand.

Experimental details

The experiment was conducted using a Split-Split-Plot Design
with two sowing dates, three irrigation levels, and two varieties,
resulting in 12 unique treatment combinations. For each
treatment combination, biophysical parameters, precisely the
Normalized Difference Vegetation Index (NDVI) and Leaf Area
Index (LAI), were measured at five distinct growth stages
correspondingto 30,45, 60, 75,and 90 Days After Sowing (DAS).
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This sampling strategy yielded a total of 60 data points (12
treatments x 5 time points) per crop season. NDVI and LAI
values were derived from (greenseeker and ceptometer) and
subsequently extracted and organized into a numerical format
for analysis. The data utilized in this study were collected over
two consecutive wheat crop seasons: 2023-24 and 2024-25.

Leaf AreaIndex

LAI is a dimensionless biophysical parameter defined as the
total one-sided green leaf area per unit ground surface area (m?
leaf area / m? ground area) [39]. The Ceptometer LP-80 was
used to measure the Leaf Area Index (LAI) and
Photosynthetically Active Radiation (PAR). Temperatures
ranging from -30°C to 50°C and relative humidity levels up to
100% are suitable operating conditions for the Ceptometer. LAI
is computed using the Ceptometer LP-80 as follows:

((1—%) fb)lnr

LAI =
A(1-0.047fb)

(1)

Where K is the extinction coefficient, which indicates the
amount of radiation absorbed by the canopy at a specific solar
zenith angle and canopy leaf angle distribution, and f; is the
beam fraction, which is determined by dividing the ratio of beam
radiation by diffuse radiation. The Ceptometer LP-80
automatically determines f, by comparing observed incidence
PAR values to the solar constant, which is a known value of light
energy from the sun (assuming clear sky conditions) at any
particular time and location on the surface of the globe. Leaf
absorption is denoted by A. The LP-80 has A setto 0.9 by default.
The ratio of incident and transmitted PAR is denoted by .
Measurements of incident PAR above the canopy and
transmitted PAR close to the ground surface are used to
compute thisratio (T).

Normalized Difference Vegetation Index:

A portable GreenSeeker® Model 505 (Trimble Navigation
Limited, Sunnyvale, CA, USA) active optical sensor that
incorporated red light (671 + 6 nm) and near-infrared (780 + 6
nm) was used to measure the wheat canopy spectra. The
carrying sensor probe was positioned above the crop ata height
of around 0.8 meters above the wheat canopy. The light beam
was perpendicular to the seed row, while the sensor route ran
parallel to the seed rows. Three rows made up each cell, and
each row was measured using three replications. Each plot was
represented by the average values. NDVI quantifies vegetation
health using reflectance in the red (R) and near-infrared (NIR)

bands[32]: PNIR—pRed

NDVI = ———(2)
pNIR+pRed
Where, pNIR is Reflectance in the NIR band and pRed is

Reflectancein thered band.

Data Structuring and Preprocessing:

For each crop season (2023-24 and 2024-25), the acquired
NDVI and LAI data were structured into separate matrices. Each
matrix consisted of 12 rows (treatment combinations) and 5
columns (DAS time points: 30, 45, 60, 75, 90). For regression
analysis and model building that can be used for all growth
stages measured, these two-dimensional matrices were
converted into one-dimensional vectors (arrays). For each year
2023-24, the NDVI matrix was reduced to a single vector,
NDVI_2023-21_flat, and the same was done for the LAl matrix as
LAI_2023-24 flat.

Each resulting vector had 60 corresponding NDVI or LAI
measurements, combining the values over all treatments and
DAS stages. This methodology combines data from various
phenological stages to determine empirical relationships
between NDVIand LAL

Regression Model Developmentand Comparison:

Using the dataset from the 2023-24 crop season as the training
set (NDVI_2023-24_flatasinputX, LAI_2023-24_flatastargetY),
several regression models were developed and compared to
identify the most suitable functional form for predicting LAI
from NDVI. The models explored included linear, ML, and
various non-linear forms. The goodness-of-fit for each model on
the training data was evaluated using the Coefficient of
Determination ®?).

Regression Model:

A statistical method for determining a quantifiable relationship
between a dependent variable and one or more independent
variablesis called aregression model.

Linear regression: Linear regression is a fundamental
statistical method used to model the relationship between a
dependent variable (Y) and one or more independent variables
(X) by fitting a straightline to the observed data.

Y = Bo + B1X + £ (3)

Where Y is the dependent variable, X is the independent
(predictor) variable, B, is the intercept (value of Y when X = 0), 51
is the slope (rate of change of Y with respect to X), and ¢ is the
random error (residual).

Non-linear regression: When a straightline cannot sufficiently
depict the connection between variables, non-linear regression
models are employed. Rather, the model incorporates
parameters in non-linear combinations, and the data exhibits a

curved trend. Y = f(X,B) + ¢ (4)

Where f(X, B) is a non-linear function in terms of the parameters f3,
eisarandom error (residual).

Exponential Regression: when the rate of change in the
dependent variable increases or decreases exponentially with
theindependentvariable.

Y = Bo.efX (5)

Where Y is the dependent variable, X is the independent
(predictor) variable, B, is the intercept (value of Y when X = 0), 51
istheslope andeis Euler'snumber (~2.718).

Power Regression: When the dependent variable scales as a
power function of the independent variable, often used in
allometricrelationships.

Y = Bo.XP1(6)

Where Y is the dependent variable, X is the independent
(predictor) variable, B, is the scale parameter, and B1 is the
Exponentthat determines curvature.

Logarithmic Regression: Modelsarapid change in Y with small
increases in X, followed by slower change, good for diminishing
returns.
Y = o+ B1l.In(X) (7)
Where In(X) is the Natural logarithm of X
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Sigmoid (Logistic) Regression: An S-shaped curve often used
to describe growth that begins slowly, increases rapidly, then
plateaus - suitable for saturating biological processes.

K
Y = 1+e—(Bo+B1X) (8)

Where 3, B1 are scale parameters, K is the carrying capacity
(maximum value), and eis Euler's number.

Machinelearningregression:

Machine learning regression is a supervised learning method
that uses input information to predict continuous outputs. It is
widely used to model and forecast numerical data in a variety of
fields, including environmental science, agriculture, and
finance. While these models are powerful, they often face
challenges such as overfitting, especially when dealing with
high-dimensional data, and require meticulous hyperparameter
tuning to achieve optimal performance. Recent advancements
have introduced innovative approaches to enhance regression
models.

Support Vector Regression (SVR): Support Vector Regression
(SVR) is an extension of the Support Vector Machine (SVM)
algorithm, designed specifically for regression problems. In
contrast to conventional regression models that try to minimize
the difference between actual and predicted values, SVR tries to
fit the best function within a tolerance margin (¢), referred to as
the epsilon-insensitive zone. The concept is that deviations
within this range are not penalized, but those outside are
minimized through a regularized loss function [36]. SVR
operates by transforming input data into a high-dimensional
feature space through a kernel function, usually the Radial Basis
Function (RBF), and then applying a linear regression model in
this transformed space. This allows SVR to handle non-linear
relationships in the data effectively. The strength of SVR is its
power to regulate the model's complexity using
hyperparameters like the regularization parameter (C), the
value of epsilon (€), and the parameters of the kernel (e.g,
gamma in RBF kernel). One of the prominent strengths of SVR is
its strength against overfitting, particularly for small or medium
datasets with high noisy cases. The model is sensitive to kernel
selection and hyperparameter tuning, which usually calls for
cross-validation and optimization methods.

Random Forest Regression (RF): Random Forest (RF)
Regression is an ensemble method that creates a large number
of decision trees when trained and produces the mean
prediction of these trees for regression tasks. Random Forest is
part of the family of bagging algorithms, whereby numerous
models are separately trained on randomly selected subsets of
the data, both along the rows (bootstrap sampling) and along
the columns (random feature selection) [7]. This ensemble
method lessens the variance observed in single decision trees,
which are vulnerable to overfitting, particularly when dealing
with noisy data. Random Forest can easily manage non-linear
relations and interactions among features without the need for
heavy preprocessing or feature engineering. It is parallelizable
and scalable and works effectively with high-dimensional
datasets, and thus it is very well-suited for real-world
applications in agriculture, environmental modeling, and
remote sensing [43]. A drawback of RF is that it will overfit if the
model is too dense or not pruned or regularized. It is also less
interpretable than models with fewer parameters, such aslinear
regression or decision trees.

Although variable importance scores give some idea of the
importance of each feature, the actual decision path is difficult to
follow when there are hundreds of trees [18]. Despite these
constraints, RF is a robust and useful regression tool whenever
predictive performance over model interpretability is more
critical. Its resilience to outliers, missing data, and irrelevant
attributes contributes to its popularity in applied research and
decision-making based on data.

The predictive capability of the selected linear model was then
rigorously evaluated using the independent dataset from the
2024-25 crop season. The NDVI_2024-25_flatarray was input to
the chosen linear equation to generate predicted LAI values
(LAI_predicted_2024-25).

These predicted LAI values were compared against the actual
observed LAI values (LAI_2024- 25_flat) from the 2024-25
season. The model's validation performance was assessed
using:

Coefficient of Determination (R?): Measuring the proportion
of variance in observed LAI explained by the model's
predictions on the validation set.

Root Mean Square Error (RMSE): Quantifying the average
prediction error in LAl units on the validation set.

Data Acquisition: NDVI and LAI
for 2023-24 and 2024-25

'

Data Preprocessing: Flatten into
Arrays

'

Split Data: Training Set for
2023-24 and Validation Set for
2024-25

)

Training Set

'

Develop and Select Model: Fit

Validation Set
el Linear, Non linear, ML etc.

I

Validate Model: Predict LAI
using Validation Set

!

Calculate Performance Metrics
and Create Visualization

|

Output: R?, RMSE, Scatter Plot

Fig.1: Flowchartofthe methodology
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Software

All data processing, statistical analysis, model development,
comparison, validation, and visualization were performed using
the Python programming language (Google Colab) with its
scientific computing libraries, including NumPy for numerical
operations, Pandas for data manipulation, scikit-learn for
regression modeling and evaluation, and Matplotlib/Seaborn
for datavisualization.

Resultsand discussion

The temporal pattern of the Normalized Difference Vegetation
Index (NDVI) and Leaf Area Index (LAI) between treatment
combinations and over two seasons of growth (2023-24 and
2024-25) is depicted in the fig.2 NDVI, one of the best-known
indicators of greenness and health of vegetation, is computed
from differential reflectance of red and near-infrared (NIR)
radiation, indicating chlorophyll concentration and
photosyntheticactivity [32].

NDVI over Time (2023-24)

Thetrendsin NDVIin all treatments and years generally reflecta
rise corresponding to vegetative development, peaking at
around 75 Days After Sowing (DAS), reflecting maximum cover
of the canopy during the reproductive stage, followed by a drop
towards 90 DAS when plants senesce. Increasing NDVI typically
reflects healthier, more vigorous cover.

Leaf Area Index (LAI), a measure of the total one-sided leaf area
per unit ground area, is another important parameter affecting
photosynthesis and overall plant productivity [39]. Like NDVI,
the LAI patterns in the graphs show an increase during canopy
growth, peaking at about 75 DAS, and then declining as plants
mature or senesce. Comparison of NDVI and LAI patterns across
different treatment combinations and between the two growing
seasons provides a scientific basis for evaluating the efficiency
of diverse farming practices and the influence of inter-annual
variations in environmental conditions on crop growth and
productivity.

LAl over Time (2023-24)
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Fig. 2: NDVIand LAI Trends Over Time
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This study developed regression models to predict the Leaf Area
Index (LAI) from NDVI values recorded at five growth stages of
wheat, using observations from one crop season for model
trainingand a subsequent season for validation.

Linearregression model:
The linear regression model fitted to the 2023-24 data resulted

inthe following equation: ; 4; _ ¢ 08 + NDVI — 1.02 9)

The model was validated using data from the 2024-25 season,
where predicted Leaf Area Index (LAI) values were compared
with observed values. The performance statistics, Coefficient of
Determination (R?) of 0.92 and Root Mean Square Error (RMSE)
of 0.30, reflect a good linear relationship between Normalized
Difference Vegetation Index (NDVI) and LAI at varying growth
stages and treatment levels. An R? value of 0.92 indicates that
the variation in LAI can be explained by the variation in NDVI to
the tune of 92%, and low RMSE ensures high predictive ability,
validating the model's use for estimating LAl from NDVI data.
The linearity of the relationship between NDVI and LAI is
consistent with findings from prior studies that highlight NDVI's
robust performance for estimating canopy attributes under
moderate to dense vegetation cover [5][14] The slope of 6.08
suggests a steep and positive increase in LAI with increasing
NDVI, which is expected since NDVI values tend to increase with
rising chlorophyll content and leaf density. However, the slightly
negative intercept (-1.02) reflects potential limitations of linear
models at very low NDVI values, where soil background or
sparse canopies may influence reflectance more strongly [38].
Though the general performance of the linear model is
satisfactory, it must be noted that NDVI does saturate with high
LAI values, especially in close canopies, tending to decrease
sensitivity overa certain point [42].

Validation of LAl Prediction (2024-25)
Equation: LAl = 6.08*NDVI + -1.02, R? = 0.92, RMSE = 0.30

Observed LAI (2024-25)
—— Predicted LAl {from 2023-24 model)

0.2 0.3 0.4 0.5 0.6 0.7 08
NDVI

Fig. 3: Validation of predicted LAl using linear regression

Exponential regression model:

To estimate LAI from NDVI values taken at various stages of
development and treatments, a regression model with an
exponential form was established to fit the potentially non-
linear relationship between vegetation indices and canopy
biophysical variables. It is most applicable when LAI increases
exponentially with NDVI, a sign of developing canopy and rapid
biomass accumulation. The best-fit exponential regression
equation obtained from the 2023-24 datais:

LAI = 0.5053. e26201NDVI (1)

The model exhibited a coefficient of determination (R?) of
0.8159. This indicates thatapproximately 81.6% of the variation
in LAI could be explained by NDVI using the exponential
relationship. Although this is slightly lower than the linear
model performance (R? = 0.92), the exponential model is
biophysically meaningful, especially in early growth stages
when LAI tends to increase rapidly with increasing NDVI.
Exponential functions have been widely used in remote sensing
to model LAI-NDVI relationships due to their ability to capture
non-linear dynamics in vegetation growth [6][17]. At low NDVI
values, LAI tends to change slowly, but as canopy density
increases, small increases in NDVI can lead to rapid increases in
LAI, an effect well captured by exponential models. However, it
is also important to note that NDVI saturation at high LAl levels
may reduce sensitivity, which may necessitate using alternative
indices or more flexible models [42].

The fitted exponential curve (blue line in Fig. 4) aligns well with
both observed and validation data points, particularly in the
middle NDVI range (0.4-0.7), supporting its applicability across
key growth stages. Its visual fit reinforces the appropriateness
of non-linear models for complex biological systems like crop
canopies.

Logarithmicregression model:

To explore the non-linear relationship between Normalized
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI), a
logarithmic regression model was developed using
observational data from the 2023-24 wheat season and
validated on an independent dataset from the 2024-25 season.

LAI = 4.1829 + 2.7671.In(NDVI) (11)

The Coefficient of Determination (R?) for the logarithmic model
was 0.8349, indicating that approximately 83.5% of the
variation in LAl was explained by the natural logarithm of NDVI.
This reflects a strong statistical fit across diverse treatments,
growth stages, and seasonal conditions. The logarithmic
relationship reveals that as NDVI increases, the rate of increase
in LAI gradually diminishes, a trend that makes physiological
sense. In the early stages of crop growth, NDVI rises quickly with
increasing canopy cover, but as the canopy nears closure, NDVI
begins to saturate. As a result, even small increases in NDVI
during later stages correspond to much smaller gains in LAL
This pattern is typical of remotely sensed vegetation indices
under moderate to high biomass conditions and aligns with
earlier findings by [5] and [6], who also reported logarithmic
and asymptotic trends in NDVI-LAI relationships due to spectral
saturation athigh leaf densities.

Powerregression model:

To better describe the non-linear relationship between
Normalized Difference Vegetation Index (NDVI) and Leaf Area
Index (LAI) in wheat, a power regression model was formulated.
This was calibrated with data from the 2023-24 season and
tested with observations from the 2024-25 season from several
treatments and stages of growth.

LAI = 5.5553.NDVI*5212 (12)
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Coefficient of Determination (R?) 0.8557 suggests that about
85.6% of the observed LAl variation can be explained by power-
transformed NDVI values, reflecting a very good fit of the model.
The power model predicts a non-linear, accelerating
relationship between LAI and NDVL. In particular, the fact that
the exponent (1.5212)islarger than 1 indicates thatincreasesin
NDVI are linked to disproportionately larger increases in LAI,
particularly at larger NDVI values. This is consistent with
intense vegetative growth stages where NDVI is responsive to
growing biomass and leaf area, especially under optimal
irrigation and nutrient conditions. Power functions are often
used in remote sensing processes where plant development is
not linear but scale-dependent, as noted by [31]. In contrast to
linear or logarithmic models, the power model fits better in
intermediate-to-high NDVIranges, where LAl grows very fast.

Sigmoidal (logistic) regression model:

To better describe the biological saturation behavior of the
NDVI-LAI relationship in wheat, a sigmoidal (logistic)
regression model was formulated. This model was trained on
2023-24 crop season field data and validated using 2024-25
data from several treatments and phenological stages.

LAI 4.541

—(6-5915.(NDVI—0.552)) (13)

- 1+exp

Coefficient of Determination (R%) 0.8625 is the highest among
all tested models, indicating that 86.3% of the variability in LAI
is explained by the NDVI through this sigmoidal function.
Sigmoid functions are commonly used in crop modeling and
remote sensing to represent phenological progress and biomass
accumulation. The logistic form is particularly suited for
modeling vegetation indices and LAI due to its ability to handle
early-stage sensitivity and late-stage saturation [28][37]. This
model offers the best compromise between accuracy and
biological realism, making it ideal for use in simulations, remote
sensing-based estimations, and decision-supporttools.

Table 1. Comparison of Different Regression Models for Estimating LAl from NDVI

Non-Linear Regression Models
Trained on 2023-24, Validated on 2024-25

e 2023-24 Observed .
x  2024-25 validation
—— Exponential fit
Logarithmic Fit
—— Power Fit =
— sigmoid Fit H

0.2 03 04 0.5 0.6 0.7 08
NDVI

Fig.4: Training and validation of non-linear models

Comparison of Different Regression Models for Estimating
LAIfrom NDVI:

Estimating LAI accurately and non-destructively through
spectral vegetation indices, such as the Normalized Difference
Vegetation Index (NDVI), has become a standard approach in
precision agriculture and crop monitoring. Nevertheless,
because of the non-linear NDVI-LAI relationship, especially
NDVI saturation at high canopy densities, it is critical to
determine suitable regression models that can account for this
complexity [13]. To compare model performance in LAI
estimation from NDVI, five linear, exponential, logarithmic,
power, and sigmoid regression equations were tested using the
2023-24 wheat season data (training) and validated against the
2024-25 data. The fit of the models was compared using the
coefficient of determination (R?) and root mean square error
(RMSE). The comparison is shownin Table 1

Regression Model Equation Rz_ RZ_ RMSE RM_SE
(Train) (Valid) (Train) (Valid)

Linear LAI = 6.08 x NDVI — 1.02 0.8130 0.9200 0.3954 0.3000
Exponential LAI = 0.5053.¢?6201NDVI 0.8159 0.9121 0.4714 0.3115
Logarithmic LAI = 4.1829 + 2.7671.In(NDVI) 0.8349 0.9168 0.4362 0.2946
Power LAI = 5.5553.NDV]*5212 0.8557 0.9185 0.4063 0.2819
Sigmoid LAI = 1T exp_(ﬁtiﬂmw_ussz)) 0.8625 0.9213 0.3945 0.2728

Among the tested models, the sigmoid equation exhibited the
highestaccuracy, with an R? 0f 0.8625 and RMSE of 0.3945 in the
training dataset, and an even stronger performance in the
validation dataset (R? = 0.9213, RMSE = 0.2728). This aligns
with previous findings that emphasize the suitability of
sigmoidal or logistic functions in capturing LAI dynamics,
especially under high NDVI conditions where saturation effects
are prominent [40].

The power and logarithmic models also performed well, with R?
values exceeding 0.85 in training and 0.91 in validation. These
models effectively capture the curvilinear relationship between
NDVI and LAI, particularly at intermediate growth stages
[24][41]. The exponential model, although slightly less accurate,
still outperformed the linear model, indicating the importance
of adopting non-linear approaches for better representation of
the biophysical processes governing canopy development [10].
The linear model, despite its simplicity and interpretability,
underestimates LAI at higher NDVI levels, supporting previous
literature that cautions against its use in dense canopies due to

NDVI saturation [13]. The results demonstrate that non-linear
regression models, particularly the sigmoid function, offer a
more robust and biologically consistent framework for
estimating LAI from NDVI across different phenological stages
in wheat. These findings are critical for improving the accuracy
of remote sensing-based crop models and decision-support
systems forirrigation management.

Comparison of Support Vector Regression and Random
ForestRegression:

In recent years, machine learning models like Support Vector
Regression (SVR) and Random Forest Regression (RF) have
become prominent due to their capacity to capture complex
relations in regression problems. SVR uses the kernel trick,
specifically the Radial Basis Function (RBF) kernel, to deal with
non-linear data by projecting it into higher-dimensional spaces.
Performance of SVR on both the training (RMSE = 0.4519, R* =
0.8435) and validation sets (RMSE = 0.3896, R? = 0.8686) is
excellent in generalization, though with slight improvement in
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the validation set. SVR is very capable of avoiding overfitting,
and so is apt to be used for smaller datasets or when high
generalization is a necessity but runs high in computational
cost, particularly with large datasets. Conversely, Random
Forest Regression (RF), which is an ensemble learning
algorithm that aggregates several decision trees, works well on
both training (RMSE = 0.3069, R* = 0.9278) and validation sets
(RMSE = 0.4129, R? = 0.8523), though there is a slight decrease
in performance on the validation set. This indicates a possible
overfitting. RF is especially effective at handling high-
dimensional, complex data and is less likely to overfit compared
to single decision trees. Nevertheless, it may be computationally
demanding and non-interpretable, particularly when there are
many trees.

Model Comparison - Validation Set Performance (2024-25)
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Both models excel in different contexts. SVR offers robust
performance with smaller datasets and maintains
generalization, making it suitable for applications requiring
stability, such as financial modeling or time-series predictions.
RF, on the other hand, performs better with large, complex
datasets and is capable of capturing intricate patterns, making it
ideal for environmental and agricultural modeling. Recent
research highlights SVR's advantages in avoiding overfitting,
while RF is preferred in high-dimensional applications where
capturing complex feature interactions is critical [43]. The
choice between SVR and RF depends on the dataset size,
complexity, and the need for interpretability versus predictive
power.

Conclusion

This study highlights the importance of modeling and validating
regression techniques to estimate wheat Leaf Area Index (LAI)
using field-based Normalized Difference Vegetation Index
(NDVI) measurements. As plant conservation and biodiversity
become increasingly critical in the face of environmental
challenges, effective monitoring of crop health is essential for
ensuring food security. The study utilized a comprehensive
dataset collected over two crop seasons, employing various
regression models, including linear, exponential, logarithmic,
power, and sigmoid functions. The findings revealed that non-
linear models, particularly the sigmoid regression, provided the
most accurate estimates of LAl, demonstrating the importance
of capturing the complex relationships between NDVI and LA,

especially in dense canopies. Additionally, the comparison of
machine learning approaches, such as Support Vector
Regression (SVR) and Random Forest Regression (RF), further
emphasized the potential of these advanced techniques in
handling complex datasets. Overall, this research provides
valuable insights into remote sensing-based crop monitoring,
enhances decision-making in agricultural practices, and
supports sustainable farming efforts.

Future Scope

Future studies should evaluate the proposed NDVI-LAI models
across wider agroecological regions, wheat cultivars, and
management conditions to improve their robustness and
transferability. Integrating additional vegetation indices,
thermal data, and UAV- or satellite-based multispectral imagery
may help reduce NDVI saturation and enhance LAI prediction
accuracy. Advanced machine-learning and deep-learning
methods also offer potential for developing more automated,
real-time LAI estimation systems. Further integration of remote
sensing outputs with crop simulation models could support
climate-smart decision-making, particularly under moisture
and heat stress. Such advancements will strengthen precision
agriculture practices and contribute to sustainable crop
monitoring and resource-use efficiency.
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