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	ABSTRACT	
This	study	tackles	the	important	issue	of	plant	conservation	by	highlighting	the	need	to	monitor	vegetation	health	and	diversity	in	
agroecosystems.	These	areas	 face	threats	 from	environmental	pressures	 like	pollution,	habitat	 loss,	and	climate	change,	which	
impact	plant	 stability.	 To	 improve	 vegetation	assessment,	 this	 research	uses	 remote	 sensing	 tools,	 speci�ically	 the	Normalized	
Difference	Vegetation	Index	(NDVI)	and	Leaf	Area	Index	(LAI),	to	create	strong	LAI	estimation	models	for	wheat.	Field	experiments	
conducted	over	two	crop	seasons	at	G.B.	Pant	University	employed	a	Split-Split-Plot	Design	with	different	sowing	dates,	irrigation	
levels,	and	varieties	to	capture	a	wide	range	of	canopy	conditions.	A	variety	of	regression	models,	including	linear,	exponential,	
logarithmic,	power,	and	sigmoid	models,	were	created	and	assessed.	Machine-learning	methods,	such	as	Support	Vector	Regression	
and	Random	Forest	Regression,	were	also	explored	to	improve	predictive	accuracy.	The	modeling	faced	challenges	due	to	NDVI	
saturation	at	high	canopy	density,	seasonal	changes	in	microclimate,	and	complex	interactions	among	treatments.	These	issues	
required	careful	calibration	and	validation	of	the	models.	Results	showed	that	non-linear	models,	especially	sigmoid	regression,	best	
represented	 the	NDVI-LAI	 relationship,	 achieving	 high	 coef�icients	 of	 determination	 (R²	 =	 0.8625	 for	 training	 and	 0.9213	 for	
validation).	Meanwhile,	machine-learning	models	also	performed	well	with	complex	data	structures.	Overall,	the	study	provides	
valuable	insights	into	crop	monitoring	using	remote	sensing,	offering	better	tools	for	precision	agriculture,	ef�icient	water	use,	and	
long-term	plant	biodiversity	conservation.
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Introduction	
Plant conservation is a vital global concern that has garnered 
considerable attention recently [25]. The diversity and health of 
plant species are essential to the world's ecosystems, whether 
they are terrestrial, aquatic, or marine [35]. At the most basic 
level, primary producers ful�ill the function of effectively 
starting all food webs and providing the basis for many human-
used ecological services, facilitating all ecological processes, 
and functioning in life support for humans. With this in mind, 
the conservation status of the variety of plants in any ecosystem 
becomes critical. The world is facing a decline in the variety of 
plants and with many causes of extinction of some plants and 
the endangerment of many more [1]. The extinction of plants 
causes a loss, and this is a problem considering the many 
functions plants provide, and the many bene�its plants provide 
to humans, like the stabilization of soil, the provision of oxygen, 
and the sequestration and puri�ication of water. 
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The observation of conserved crops provides the foundation for 
stress detection in the plants in order to initiate loss prevention 
action when stress is  caused by disease or hostile 
environmental conditions. Crop monitoring also helps to 
enhance crop yields, maximize the usage of resources, and 
ultimately ensure food security. Crop monitoring using sensing 
has progressed more rapidly due to technological innovation 
[30].
Remote sensing technology is largely unopposed as a means for 
monitoring crops. It is a non-intrusive means of access, 
contemporary and extensive in coverage. The physical structure 
of plant canopies plays an important role in regulating 
ecosystems, as it modi�ies energy, moisture, and gas exchange 
between the soil, the atmosphere, and vegetation. The canopy's 
complicated structure includes the leaf area index (LAI), which 
is the most important of the several structural variables, and is 
de�ined as the total area of leaves, on one side of the leaves, 
which is for photosynthesis, and is per unit area of the ground 
within the canopy [2][8]. It is a dimensionless measure, but it 
very well approximates the density of the photosynthetic 
apparatus and functions as a measure of the canopy structure 
and function. The LAI value most probably determines the 
fraction of solar energy incident on the canopy in the 
photosynthetically active domain (PAR, ~ 400-700 nm) that is
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captured for photosynthesis [16][29]. Higher LAI values 
enhance the Gross Primary Production (GPP) of the ecosystem, 
the total carbon captured through the photosynthesis process, 
as well as the chances of chlorophyll molecules to intercept 
photons to power their photosynthesis. This association, 
frequently de�ined in terms of light extinction rules similar to 
the Beer-Lambert Law, regulates the degree of light energy �ixed 
in chemical form within the canopy. Increasing LAI does 
augment light capture, but the in�luence ultimately reaches an 
asymptote at high levels of LAI due to growing self-shading by 
lower leaves. LAI has a strong impact on Net Primary Production 
(NPP), the net gain of biomass after subtracting respiration by 
plants, which is the foundation of the food web of the ecosystem 
and the potential for carbon sequestration. LAI dictates the total 
surface area available for transpiration, the process by which 
water vapor is released through microscopic leaf pores called 
stomata [4][26]. Consequently, it signi�icantly in�luences total 
canopy conductance to water vapor and is a major determinant 
of ecosystem-level evapotranspiration (ET). This profoundly 
impacts the local and regional water balance, affecting soil 
moisture depletion rates, runoff generation, and atmospheric 
humidity. This control over water vapor �lux also means LAI is 
crucial in partitioning incoming net radiation (solar energy 
absorbed by the surface) into latent heat �lux (energy consumed 
during transpiration, leading to evaporative cooling) and 
sensible heat �lux (energy that directly heats the air). Canopies 
with greater LAI tend to have more evaporative cooling and 
lower surface temperatures than thinly vegetated sites under 
the same conditions, thereby affecting microclimate and even 
regional climate regimes. Importantly, LAI is not a �ixed 
characteristic but a dynamic measure of the complex interaction 
between vegetation and its environment [2][33]. It has clear 
phenological patterns, following seasonal cycles of growth, like 
the emergence of leaves in spring and autumn senescence in 
deciduous species. Its size combines the impacts of resource 
availability with restrictions in light, water, or nutrients, usually 
limiting maximum leaf area development or causing decreased 
leaf longevity. LAI is sensitive to environmental stress (e.g., 
drought, heat waves, and air pollution) and disturbance (e.g., 
�ire, insects, disease, logging, or grazing), typically through 
physiological mechanisms such as stomatal closure, early 
senescence of leaves, or defoliation. Tracking these changes in 
LAI therefore delivers an informative, integrated measure of 
vegetation health, stress, phenological timing, and ecosystem 
dynamics and productivity potential.
The Normalized Difference Vegetation Index (NDVI) is a 
radiometric indicator of photosynthetic activity based on the 
differential absorption of red (600-700 nm) and near-infrared 
(NIR, 700-1300 nm) radiation by vegetation canopies [32]. The 
NDVI formula, NDVI = (ρNIR - ρred)/(ρNIR + ρred), in which ρ is 
surface re�lectance, takes advantage of chlorophyll's high 
absorption of the red end of the spectrum and high NIR 
re�lectance from leaf mesophyll caused by internal scattering 
[11]. NDVI displays asymptotic behaviors with important 
biophysical variables: It is closely related to leaf area index (LAI) 
up to thresholds of saturation (LAI ≈ 3-4) [3], displays a near-
l i n e a r  r e l a t i o n s h i p  w i t h  a  f r a c t i o n  o f  a b s o r b e d 
photosynthetically active radiation (fAPAR) for NDVI < ≈ 0.7 
[27], and acts as a substitute for canopy chlorophyll 
concentration after correction from structural effects [14]. 
Although extensively applied in ecological surveys and 
productivity assessment [34], NDVI has some limitations, such 
as saturation in closed canopies (NDVI > 0.7), soil background 

re�lectance sensitivity (especially in arid environments), and 
atmospheric interference effects [22]. These limitations have 
spurred the creation of amended indices such as the Soil-
Adjusted Vegetation Index (SAVI) [19], Enhanced Vegetation 
Index (EVI) [20], and Wide Dynamic Range Vegetation Index 
(WDRVI) [13] that include more correction factors but retain 
NDVI's underlying biophysical foundation. 
The relationship between LAI and NDVI is one of the most basic 
forms of remote sensing relationships of vegetation, where LAI 
is proxied by NDVI spectrally, because both rely on canopies' 
light interception [3]. The theory is based on adapted versions of 
the Beer-Lambert law, where LAI affects the light attenuation 
through the canopy, and NDVI represents the spectrally signed 
absorption [27]. It has been shown that there is an empirical 
asymptotic and nonlinear relationship, having: (1) low LAI (0-2) 
and linear NDVI rise sensitivity of approximately 0.1-0.15 units 
per LAI unit increase; (2) mid LAI (2-4) diminishing sensitivity 
because of mutual shading; and (3) saturation at high LAI (>4-6) 
where added leaf layers contribute little to the NDVI [6]. The 
LAI-NDVI correlation is highly predictable by biome, where 
coniferous stands saturate quickly on NDVI, while broad leaf 
canopies take longer to saturate, showing the contraries in leaf 
angle distribution and clumping [9]. The LAI-NDVI correlation is 
also modulated by canopy structure factors such as the leaf 
inclination angle distribution (planophile vs. erectophile 
canopies) and foliage clumping index that in�luence light 
penetration and scattering [23]. Current methods overcome 
saturation constraints using hybrid techniques that blend NDVI 
with alternative spectral bands (e.g., red-edge re�lectance) or 
physical approaches that include canopy radiative transfer 
theory [21].

Materials	and	Methods	
Experimental	site: 
Wheat is widely grown in the rabi	season throughout the Udham 
Singh Nagar (US Nagar) district of Uttarakhand. A �ield 
experiment was conducted at C-6, N.E. Borlaug Crop Research 
Centre, G.B. Pant University of Agriculture and Technology, 
Pantnagar, Udham Singh Nagar, which falls in the Tarai region of 
the Kumaon division. Geographically, the region is located 
between 28°53′ to 29°23′ N latitude and 78°45′ to 80°08′ E 
longitude. The area has a climate varying from subtropical to 
humid subtropical. Summers, particularly in April and May, are 
generally warm, followed by the southwest monsoon that 
delivers most of the annual rains from mid-June to late 
September. Winter arrives by late October and lasts through to 
March, yielding favorable thermal conditions for winter crops 
such as wheat. The Tarai belt is characterized by deep, fertile 
alluvial soils and rich water resources, making it extremely 
suitable for wheat production. The good agro-climatic 
conditions, combined with well-established irrigation facilities, 
provide for maximum growth and yield of the wheat crop in this 
region. This makes the region an important contributor to 
wheat production in Uttarakhand.

Experimental	details
The experiment was conducted using a Split-Split-Plot Design 
with two sowing dates, three irrigation levels, and two varieties, 
resulting in 12 unique treatment combinations. For each 
treatment combination, biophysical parameters, precisely the 
Normalized Difference Vegetation Index (NDVI) and Leaf Area 
Index (LAI), were measured at �ive distinct growth stages 
corresponding to 30, 45, 60, 75, and 90 Days After Sowing (DAS). 
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This sampling strategy yielded a total of 60 data points (12 
treatments × 5 time points) per crop season. NDVI and LAI 
values were derived from (greenseeker and ceptometer) and 
subsequently extracted and organized into a numerical format 
for analysis. The data utilized in this study were collected over 
two consecutive wheat crop seasons: 2023-24 and 2024-25. 

Leaf	Area	Index
LAI is a dimensionless biophysical parameter de�ined as the 
total one-sided green leaf area per unit ground surface area (m² 
leaf area / m² ground area) [39]. The Ceptometer LP-80 was 
u s e d  t o  m e a s u r e  t h e  L e a f  A r e a  I n d e x  ( L A I )  a n d 
Photosynthetically Active Radiation (PAR). Temperatures 
ranging from -30°C to 50°C and relative humidity levels up to 
100% are suitable operating conditions for the Ceptometer. LAI 
is computed using the Ceptometer LP-80 as follows:

Where K is the extinction coef�icient, which indicates the 
amount of radiation absorbed by the canopy at a speci�ic solar 
zenith angle and canopy leaf angle distribution, and f  is the b

beam fraction, which is determined by dividing the ratio of beam 
radiation by diffuse radiation. The Ceptometer LP-80 
automatically determines f  by comparing observed incidence b

PAR values to the solar constant, which is a known value of light 
energy from the sun (assuming clear sky conditions) at any 
particular time and location on the surface of the globe. Leaf 
absorption is denoted by A. The LP-80 has A set to 0.9 by default. 
The ratio of incident and transmitted PAR is denoted by τ. 
Measurements of incident PAR above the canopy and 
transmitted PAR close to the ground surface are used to 
compute this ratio (τ).

Normalized	Difference	Vegetation	Index: 
A portable GreenSeeker® Model 505 (Trimble Navigation 
Limited, Sunnyvale, CA, USA) active optical sensor that 
incorporated red light (671 ± 6 nm) and near-infrared (780 ± 6 
nm) was used to measure the wheat canopy spectra. The 
carrying sensor probe was positioned above the crop at a height 
of around 0.8 meters above the wheat canopy. The light beam 
was perpendicular to the seed row, while the sensor route ran 
parallel to the seed rows. Three rows made up each cell, and 
each row was measured using three replications. Each plot was 
represented by the average values. NDVI quanti�ies vegetation 
health using re�lectance in the red (R) and near-infrared (NIR) 
bands [32]:

Where,	 ρNIR		 is	 Re�lectance	 in	 the	 NIR	 band	 and	 ρRed	 is	
Re�lectance	in	the	red	band. 

Data	Structuring	and	Preprocessing:	
For each crop season (2023-24 and 2024-25), the acquired 
NDVI and LAI data were structured into separate matrices. Each 
matrix consisted of 12 rows (treatment combinations) and 5 
columns (DAS time points: 30, 45, 60, 75, 90). For regression 
analysis and model building that can be used for all growth 
stages measured, these two-dimensional matrices were 
converted into one-dimensional vectors (arrays). For each year 
2023-24, the NDVI matrix was reduced to a single vector, 
NDVI_2023-21_�lat, and the same was done for the LAI matrix as 
LAI_2023-24_�lat. 

Each resulting vector had 60 corresponding NDVI or LAI 
measurements, combining the values over all treatments and 
DAS stages. This methodology combines data from various 
phenological stages to determine empirical relationships 
between NDVI and LAI.

Regression	Model	Development	and	Comparison:	
Using the dataset from the 2023-24 crop season as the training 
set (NDVI_2023-24_�lat as input X, LAI_2023-24_�lat as target Y), 
several regression models were developed and compared to 
identify the most suitable functional form for predicting LAI 
from NDVI. The models explored included linear, ML, and 
various non-linear forms. The goodness-of-�it for each model on 
the training data was evaluated using the Coef�icient of 
Determination ®²).

Regression	Model:	
A statistical method for determining a quanti�iable relationship 
between a dependent variable and one or more independent 
variables is called a regression model.

Linear	 regression: Linear regression is a fundamental 
statistical method used to model the relationship between a 
dependent variable (Y) and one or more independent variables 
(X) by �itting a straight line to the observed data.

Where	 Y	 is	 the	 dependent	 variable,	 X	 is	 the	 independent	
(predictor)	variable,	β 		is	the	intercept	(value	of	Y	when	X	=	0),	β1		o

is	the	slope	(rate	of	change	of	Y	with	respect	to	X),	and	ε	 is	the	
random	error	(residual).

Non-linear	regression: When a straight line cannot suf�iciently 
depict the connection between variables, non-linear regression 
models are employed. Rather, the model incorporates 
parameters in non-linear combinations, and the data exhibits a 
curved trend.

Where	f(X,	β)	is	a	non-linear	function	in	terms	of	the	parameters	β,	
ε	is	a	random	error	(residual).

Exponential	 Regression: when the rate of change in the 
dependent variable increases or decreases exponentially with 
the independent variable.

Where	 Y	 is	 the	 dependent	 variable,	 X	 is	 the	 independent	
(predictor)	variable,	β 		is	the	intercept	(value	of	Y	when	X	=	0),	β1		o

is	the	slope	and	e	is	Euler's	number	(~2.718).

Power	Regression: When the dependent variable scales as a 
power function of the independent variable, often used in 
allometric relationships.

Where	 Y	 is	 the	 dependent	 variable,	 X	 is	 the	 independent	
(predictor)	 variable,	 β 		 is	 the	 scale	 parameter,	 and	 β1		 is	 the	o

Exponent	that	determines	curvature.

Logarithmic	Regression: Models a rapid change in Y with small 
increases in X, followed by slower change, good for diminishing 
returns.
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Sigmoid	(Logistic)	Regression: An S-shaped curve often used 
to describe growth that begins slowly, increases rapidly, then 
plateaus - suitable for saturating biological processes.

Where β β1  are scale parameters, K is the carrying capacity o, 

(maximum value), and e is Euler's number.

Machine	learning	regression:	
Machine learning regression is a supervised learning method 
that uses input information to predict continuous outputs. It is 
widely used to model and forecast numerical data in a variety of 
�ields, including environmental science, agriculture, and 
�inance. While these models are powerful, they often face 
challenges such as over�itting, especially when dealing with 
high-dimensional data, and require meticulous hyperparameter 
tuning to achieve optimal performance. Recent advancements 
have introduced innovative approaches to enhance regression 
models. 

Support	Vector	Regression	(SVR): Support Vector Regression 
(SVR) is an extension of the Support Vector Machine (SVM) 
algorithm, designed speci�ically for regression problems. In 
contrast to conventional regression models that try to minimize 
the difference between actual and predicted values, SVR tries to 
�it the best function within a tolerance margin (ε), referred to as 
the epsilon-insensitive zone. The concept is that deviations 
within this range are not penalized, but those outside are 
minimized through a regularized loss function [36]. SVR 
operates by transforming input data into a high-dimensional 
feature space through a kernel function, usually the Radial Basis 
Function (RBF), and then applying a linear regression model in 
this transformed space. This allows SVR to handle non-linear 
relationships in the data effectively. The strength of SVR is its 
p o w e r  t o  r e g u l a t e  t h e  m o d e l ' s  c o m p l e x i t y  u s i n g 
hyperparameters like the regularization parameter (C), the 
value of epsilon (ε), and the parameters of the kernel (e.g., 
gamma in RBF kernel). One of the prominent strengths of SVR is 
its strength against over�itting, particularly for small or medium 
datasets with high noisy cases. The model is sensitive to kernel 
selection and hyperparameter tuning, which usually calls for 
cross-validation and optimization methods.

Random	 Forest	 Regression	 (RF):	 Random Forest (RF) 
Regression is an ensemble method that creates a large number 
of decision trees when trained and produces the mean 
prediction of these trees for regression tasks. Random Forest is 
part of the family of bagging algorithms, whereby numerous 
models are separately trained on randomly selected subsets of 
the data, both along the rows (bootstrap sampling) and along 
the columns (random feature selection) [7]. This ensemble 
method lessens the variance observed in single decision trees, 
which are vulnerable to over�itting, particularly when dealing 
with noisy data. Random Forest can easily manage non-linear 
relations and interactions among features without the need for 
heavy preprocessing or feature engineering. It is parallelizable 
and scalable and works effectively with high-dimensional 
datasets, and thus it is very well-suited for real-world 
applications in agriculture, environmental modeling, and 
remote sensing [43]. A drawback of RF is that it will over�it if the 
model is too dense or not pruned or regularized. It is also less 
interpretable than models with fewer parameters, such as linear 
regression or decision trees. 

Although variable importance scores give some idea of the 
importance of each feature, the actual decision path is dif�icult to 
follow when there are hundreds of trees [18]. Despite these 
constraints, RF is a robust and useful regression tool whenever 
predictive performance over model interpretability is more 
critical. Its resilience to outliers, missing data, and irrelevant 
attributes contributes to its popularity in applied research and 
decision-making based on data.
The predictive capability of the selected linear model was then 
rigorously evaluated using the independent dataset from the 
2024-25 crop season. The NDVI_2024-25_�lat array was input to 
the chosen linear equation to generate predicted LAI values 
(LAI_predicted_2024-25).
These predicted LAI values were compared against the actual 
observed LAI values (LAI_2024- 25_�lat) from the 2024-25 
season. The model's validation performance was assessed 
using:
Coef�icient	of	Determination	(R²): Measuring the proportion 
of variance in observed LAI explained by the model's 
predictions on the validation set.

Root	 Mean	 Square	 Error	 (RMSE): Quantifying the average 
prediction error in LAI units on the validation set.

Fig.1:	Flowchart	of	the	methodology	
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Software
All data processing, statistical analysis, model development, 
comparison, validation, and visualization were performed using 
the Python programming language (Google Colab) with its 
scienti�ic computing libraries, including NumPy for numerical 
operations, Pandas for data manipulation, scikit-learn for 
regression modeling and evaluation, and Matplotlib/Seaborn 
for data visualization. 

Results	and	discussion
The temporal pattern of the Normalized Difference Vegetation 
Index (NDVI) and Leaf Area Index (LAI) between treatment 
combinations and over two seasons of growth (2023-24 and 
2024-25) is depicted in the �ig.2 NDVI, one of the best-known 
indicators of greenness and health of vegetation, is computed 
from differential re�lectance of red and near-infrared (NIR) 
radiation,  indicating chlorophyll  concentration and 
photosynthetic activity [32]. 

Fig.	2:	NDVI	and	LAI	Trends	Over	Time

The trends in NDVI in all treatments and years generally re�lect a 
rise corresponding to vegetative development, peaking at 
around 75 Days After Sowing (DAS), re�lecting maximum cover 
of the canopy during the reproductive stage, followed by a drop 
towards 90 DAS when plants senesce. Increasing NDVI typically 
re�lects healthier, more vigorous cover.
Leaf Area Index (LAI), a measure of the total one-sided leaf area 
per unit ground area, is another important parameter affecting 
photosynthesis and overall plant productivity [39]. Like NDVI, 
the LAI patterns in the graphs show an increase during canopy 
growth, peaking at about 75 DAS, and then declining as plants 
mature or senesce. Comparison of NDVI and LAI patterns across 
different treatment combinations and between the two growing 
seasons provides a scienti�ic basis for evaluating the ef�iciency 
of diverse farming practices and the in�luence of inter-annual 
variations in environmental conditions on crop growth and 
productivity.
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Fig.	3:	Validation	of	predicted	LAI	using	linear	regression	

This study developed regression models to predict the Leaf Area 
Index (LAI) from NDVI values recorded at �ive growth stages of 
wheat, using observations from one crop season for model 
training and a subsequent season for validation.

Linear	regression	model: 
The linear regression model �itted to the 2023-24 data resulted 
in the following equation:

The model was validated using data from the 2024-25 season, 
where predicted Leaf Area Index (LAI) values were compared 
with observed values. The performance statistics, Coef�icient of 
Determination (R²) of 0.92 and Root Mean Square Error (RMSE) 
of 0.30, re�lect a good linear relationship between Normalized 
Difference Vegetation Index (NDVI) and LAI at varying growth 
stages and treatment levels. An R² value of 0.92 indicates that 
the variation in LAI can be explained by the variation in NDVI to 
the tune of 92%, and low RMSE ensures high predictive ability, 
validating the model's use for estimating LAI from NDVI data.
The linearity of the relationship between NDVI and LAI is 
consistent with �indings from prior studies that highlight NDVI's 
robust performance for estimating canopy attributes under 
moderate to dense vegetation cover [5][14] The slope of 6.08 
suggests a steep and positive increase in LAI with increasing 
NDVI, which is expected since NDVI values tend to increase with 
rising chlorophyll content and leaf density. However, the slightly 
negative intercept (-1.02) re�lects potential limitations of linear 
models at very low NDVI values, where soil background or 
sparse canopies may in�luence re�lectance more strongly [38]. 
Though the general performance of the linear model is 
satisfactory, it must be noted that NDVI does saturate with high 
LAI values, especially in close canopies, tending to decrease 
sensitivity over a certain point [42].

Exponential	regression	model: 
To estimate LAI from NDVI values taken at various stages of 
development and treatments, a regression model with an 
exponential form was established to �it the potentially non-
linear relationship between vegetation indices and canopy 
biophysical variables. It is most applicable when LAI increases 
exponentially with NDVI, a sign of developing canopy and rapid 
biomass accumulation. The best-�it exponential regression 
equation obtained from the 2023-24 data is:

The model exhibited a coef�icient of determination (R²) of 
0.8159. This indicates that approximately 81.6% of the variation 
in LAI could be explained by NDVI using the exponential 
relationship. Although this is slightly lower than the linear 
model performance (R² = 0.92), the exponential model is 
biophysically meaningful, especially in early growth stages 
when LAI tends to increase rapidly with increasing NDVI. 
Exponential functions have been widely used in remote sensing 
to model LAI-NDVI relationships due to their ability to capture 
non-linear dynamics in vegetation growth [6][17]. At low NDVI 
values, LAI tends to change slowly, but as canopy density 
increases, small increases in NDVI can lead to rapid increases in 
LAI, an effect well captured by exponential models. However, it 
is also important to note that NDVI saturation at high LAI levels 
may reduce sensitivity, which may necessitate using alternative 
indices or more �lexible models [42].
The �itted exponential curve (blue line in Fig. 4) aligns well with 
both observed and validation data points, particularly in the 
middle NDVI range (0.4-0.7), supporting its applicability across 
key growth stages. Its visual �it reinforces the appropriateness 
of non-linear models for complex biological systems like crop 
canopies.

Logarithmic	regression	model: 
To explore the non-linear relationship between Normalized 
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI), a 
logarithmic regression model was developed using 
observational data from the 2023-24 wheat season and 
validated on an independent dataset from the 2024-25 season.

The Coef�icient of Determination (R²) for the logarithmic model 
was 0.8349, indicating that approximately 83.5% of the 
variation in LAI was explained by the natural logarithm of NDVI. 
This re�lects a strong statistical �it across diverse treatments, 
growth stages, and seasonal conditions. The logarithmic 
relationship reveals that as NDVI increases, the rate of increase 
in LAI gradually diminishes, a trend that makes physiological 
sense. In the early stages of crop growth, NDVI rises quickly with 
increasing canopy cover, but as the canopy nears closure, NDVI 
begins to saturate. As a result, even small increases in NDVI 
during later stages correspond to much smaller gains in LAI. 
This pattern is typical of remotely sensed vegetation indices 
under moderate to high biomass conditions and aligns with 
earlier �indings by [5] and [6], who also reported logarithmic 
and asymptotic trends in NDVI-LAI relationships due to spectral 
saturation at high leaf densities.

Power	regression	model: 
To better describe the non-linear relationship between 
Normalized Difference Vegetation Index (NDVI) and Leaf Area 
Index (LAI) in wheat, a power regression model was formulated. 
This was calibrated with data from the 2023-24 season and 
tested with observations from the 2024-25 season from several 
treatments and stages of growth.



	©	2025	AATCC	Review.	All Rights Reserved. 632.

Siddhant	Gupta	et	al.,	/	AATCC	Review	(2025)

Coef�icient of Determination (R²) 0.8625 is the highest among 
all tested models, indicating that 86.3% of the variability in LAI 
is explained by the NDVI through this sigmoidal function. 
Sigmoid functions are commonly used in crop modeling and 
remote sensing to represent phenological progress and biomass 
accumulation. The logistic form is particularly suited for 
modeling vegetation indices and LAI due to its ability to handle 
early-stage sensitivity and late-stage saturation [28][37]. This 
model offers the best compromise between accuracy and 
biological realism, making it ideal for use in simulations, remote 
sensing-based estimations, and decision-support tools.

Coef�icient of Determination (R²) 0.8557 suggests that about 
85.6% of the observed LAI variation can be explained by power-
transformed NDVI values, re�lecting a very good �it of the model. 
The power model predicts a non-linear, accelerating 
relationship between LAI and NDVI. In particular, the fact that 
the exponent (1.5212) is larger than 1 indicates that increases in 
NDVI are linked to disproportionately larger increases in LAI, 
particularly at larger NDVI values. This is consistent with 
intense vegetative growth stages where NDVI is responsive to 
growing biomass and leaf area, especially under optimal 
irrigation and nutrient conditions. Power functions are often 
used in remote sensing processes where plant development is 
not linear but scale-dependent, as noted by [31]. In contrast to 
linear or logarithmic models, the power model �its better in 
intermediate-to-high NDVI ranges, where LAI grows very fast.

Sigmoidal	(logistic)	regression	model: 
To better describe the biological saturation behavior of the 
NDVI–LAI relationship in wheat, a sigmoidal (logistic) 
regression model was formulated. This model was trained on 
2023-24 crop season �ield data and validated using 2024-25 
data from several treatments and phenological stages.

Fig.4:	Training	and	validation	of	non-linear	models

Comparison	of	Different	Regression	Models	for	Estimating	
LAI	from	NDVI:
Estimating LAI accurately and non-destructively through 
spectral vegetation indices, such as the Normalized Difference 
Vegetation Index (NDVI), has become a standard approach in 
precision agriculture and crop monitoring. Nevertheless, 
because of the non-linear NDVI-LAI relationship, especially 
NDVI saturation at high canopy densities, it is critical to 
determine suitable regression models that can account for this 
complexity [13]. To compare model performance in LAI 
estimation from NDVI, �ive linear, exponential, logarithmic, 
power, and sigmoid regression equations were tested using the 
2023-24 wheat season data (training) and validated against the 
2024-25 data. The �it of the models was compared using the 
coef�icient of determination (R²) and root mean square error 
(RMSE). The comparison is shown in Table 1

Table	1.	Comparison	of	Different	Regression	Models	for	Estimating	LAI	from	NDVI

Among the tested models, the sigmoid equation exhibited the 
highest accuracy, with an R² of 0.8625 and RMSE of 0.3945 in the 
training dataset, and an even stronger performance in the 
validation dataset (R² = 0.9213, RMSE = 0.2728). This aligns 
with previous �indings that emphasize the suitability of 
sigmoidal or logistic functions in capturing LAI dynamics, 
especially under high NDVI conditions where saturation effects 
are prominent [40].
The power and logarithmic models also performed well, with R² 
values exceeding 0.85 in training and 0.91 in validation. These 
models effectively capture the curvilinear relationship between 
NDVI and LAI, particularly at intermediate growth stages 
[24][41]. The exponential model, although slightly less accurate, 
still outperformed the linear model, indicating the importance 
of adopting non-linear approaches for better representation of 
the biophysical processes governing canopy development [10].
The linear model, despite its simplicity and interpretability, 
underestimates LAI at higher NDVI levels, supporting previous 
literature that cautions against its use in dense canopies due to

NDVI saturation [13]. The results demonstrate that non-linear 
regression models, particularly the sigmoid function, offer a 
more robust and biologically consistent framework for 
estimating LAI from NDVI across different phenological stages 
in wheat. These �indings are critical for improving the accuracy 
of remote sensing-based crop models and decision-support 
systems for irrigation management.

Comparison	 of	 Support	 Vector	 Regression	 and	 Random	
Forest	Regression: 
In recent years, machine learning models like Support Vector 
Regression (SVR) and Random Forest Regression (RF) have 
become prominent due to their capacity to capture complex 
relations in regression problems. SVR uses the kernel trick, 
speci�ically the Radial Basis Function (RBF) kernel, to deal with 
non-linear data by projecting it into higher-dimensional spaces. 
Performance of SVR on both the training (RMSE = 0.4519, R² = 
0.8435) and validation sets (RMSE = 0.3896, R² = 0.8686) is 
excellent in generalization, though with slight improvement in
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the validation set. SVR is very capable of avoiding over�itting, 
and so is apt to be used for smaller datasets or when high 
generalization is a necessity but runs high in computational 
cost, particularly with large datasets. Conversely, Random 
Forest Regression (RF), which is an ensemble learning 
algorithm that aggregates several decision trees, works well on 
both training (RMSE = 0.3069, R² = 0.9278) and validation sets 
(RMSE = 0.4129, R² = 0.8523), though there is a slight decrease 
in performance on the validation set. This indicates a possible 
over�itting. RF is especially effective at handling high-
dimensional, complex data and is less likely to over�it compared 
to single decision trees. Nevertheless, it may be computationally 
demanding and non-interpretable, particularly when there are 
many trees.

Fig.5:	Validation	of	Machine	Learning	regression	models	(Support	Vector	regressor	and	
Random	Forest)

Both models excel in different contexts. SVR offers robust 
performance with  smal ler  datasets  and maintains 
generalization, making it suitable for applications requiring 
stability, such as �inancial modeling or time-series predictions. 
RF, on the other hand, performs better with large, complex 
datasets and is capable of capturing intricate patterns, making it 
ideal for environmental and agricultural modeling. Recent 
research highlights SVR's advantages in avoiding over�itting, 
while RF is preferred in high-dimensional applications where 
capturing complex feature interactions is critical [43]. The 
choice between SVR and RF depends on the dataset size, 
complexity, and the need for interpretability versus predictive 
power.

Conclusion	
This study highlights the importance of modeling and validating 
regression techniques to estimate wheat Leaf Area Index (LAI) 
using �ield-based Normalized Difference Vegetation Index 
(NDVI) measurements. As plant conservation and biodiversity 
become increasingly critical in the face of environmental 
challenges, effective monitoring of crop health is essential for 
ensuring food security. The study utilized a comprehensive 
dataset collected over two crop seasons, employing various 
regression models, including linear, exponential, logarithmic, 
power, and sigmoid functions. The �indings revealed that non-
linear models, particularly the sigmoid regression, provided the 
most accurate estimates of LAI, demonstrating the importance 
of capturing the complex relationships between NDVI and LAI,

especially in dense canopies. Additionally, the comparison of 
machine learning approaches, such as Support Vector 
Regression (SVR) and Random Forest Regression (RF), further 
emphasized the potential of these advanced techniques in 
handling complex datasets. Overall, this research provides 
valuable insights into remote sensing-based crop monitoring, 
enhances decision-making in agricultural practices, and 
supports sustainable farming efforts.

Future	Scope
Future studies should evaluate the proposed NDVI-LAI models 
across wider agroecological regions, wheat cultivars, and 
management conditions to improve their robustness and 
transferability. Integrating additional vegetation indices, 
thermal data, and UAV- or satellite-based multispectral imagery 
may help reduce NDVI saturation and enhance LAI prediction 
accuracy. Advanced machine-learning and deep-learning 
methods also offer potential for developing more automated, 
real-time LAI estimation systems. Further integration of remote 
sensing outputs with crop simulation models could support 
climate-smart decision-making, particularly under moisture 
and heat stress. Such advancements will strengthen precision 
agriculture practices and contribute to sustainable crop 
monitoring and resource-use ef�iciency.
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