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([ ABSTRACT

Rice productivity in irrigated ecosystems is strongly governed by the balance between source capacity, sink strength, and the
efficiency of assimilate transport. Despite high input availability, yield gains often remain inconsistent due to physiological
constraints operating at different developmental stages. This review synthesises current knowledge on source-sink relationships in
irrigated rice, with emphasis on photosynthetic capacity, carbohydrate partitioning, phloem transport, grain filling dynamics, and
their regulation by agronomic and genetic factors. Evidence from physiological, biochemical, and molecular studies is integrated to
explain how source activity, sink size, and transport processes interact to determine final grain yield. Important challenges include
stage-specific limitations in assimilate translocation and sink unloading under high resource inputs, along with frequent
mismatches between enhanced sink potential and transport or remobilisation capacity. By integrating physiological, biochemical,
and molecular insights, this review (i) identifies stage-specific source or sink limitations in irrigated rice systems and (ii) proposes an
integrated framework for breeding and management strategies that align source longevity with efficient sink unloading. The
insights presented provide a basis for developing yield-stable rice ideotypes and optimising management practices in intensive
irrigated environments.
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1.Introduction

Rice supports the livelihoods of most of the world's population
and forms the foundation of the livelihoods of millions of
smallholder farmers worldwide [1]. Irrigated rice cultivation, a
crucial component of rice production systems, significantly
contributes to global productivity and is central to ensuring food
security, particularly in Asia and certain parts of Africa [2].
However, yield plateaus that have been recorded in various
irrigated areas of production cannot be attributed only to
management or resource limitations but also to inherent
physiological limits on the production of assimilates, their
movement, and consumption during the grain-filling period [3],
[4]. The promotion of yield under irrigation conditions is a
challenging problem, and the increased supply of resources
does not necessarily lead to an increase in harvestable yield.
Overload of nutrients and water may stimulate unproportional
vegetative growth, thus diverting assimilates toward the growth
of the grains. On the same note, momentary thermal or hydric
stress during anthesis and the early grain-filling stage may affect
phloem transportand reduce sink use efficiency [5], [6].
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More importantly, the yield response induced by the nitrogen
and irrigation regimes depends on the interaction of the
exogenous variables and genotypic characteristics, which
include source capacity, sink potential, and transport efficiency.
Therefore, when the source strength or sink capacity is
increased in isolation, in many cases, the capabilities at other
points of the assimilate allocation spectrum are being limited
[7].

Physiologically, source tissues are those that manufacture and
export assimilates, mostly photosynthetic foliage and transient
stem reserves, and sink tissues are the growing organs, such as
grains and panicles, which take in and break down assimilates. A
variety of factors, such as the size of the canopy, photosynthetic
capacity, the amount of chlorophyll, and nitrogen status,
regulate the strength of sources. However, the number of
spikelets regulates sink strength, the capacity of the endosperm,
and the activity of starch-synthesising enzymes [ 3], [4]. The
phloem loading procedures synchronise these elements,
including long-distance transportation and remobilisation,
which together define the effectiveness of assimilate delivery to
growing grains [5]. Combined, there is a coordinated regulation
of assimilate production, transportation, and utilisation to
maintain high yield. A huge sink can only pay off in situations
where itis supported by adequate source capacity and transport
efficiency. However, in situations where it is not supported due
to genotype or environmentally determined constraints on sink
capacity or grain-filling events [6], [ 7], it may not be beneficial.
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This review will therefore serve the purpose of (i) synthesising
existing knowledge of the physiological, biochemical and
molecular responses to the source -sink manipulation, (ii)
delineating the situations where the source or sink constraint
becomes the dominant factor in the formation of yield in
irrigated systems, and (iii) making research priorities and
breeding strategies to optimise the contact between source
supply and sink demand.

2.Concept of Source-Sink Relationship in Rice

The relationship between the source and sink of rice explains
the formation of assimilates in the production, transportation
and use of rice. It summarises the physiological balance
between the photosynthetic organs (sources), which synthesise
carbohydrates, and developing organs (sinks), which
accumulate or consume them (figure 1). The flag leaf and upper
leaves serve as the primary sources during the grain-filling
period, while the developing panicles are the primary sinks
during this period [2], [8]. Yield potential in irrigated conditions,
where external stresses are insignificant, depends to a large
extent on the performance of the internal network of assimilate
transfer and utilisation [8].

2.1 Description of assimilate flow: source — transport —
sink

Movement of assimilates in rice. Stem photosynthetic carbon
fixation is assimilated in the leaves, which are then translocated
by the phloem to sinks developing in panicles and grains. In
chloroplasts, sucrose is synthesised and actively loaded by
sucrose transporters, and then transported based on osmotic
gradients between source and sink tissues [9]. The
disinfoculation process is either a symplastic or apoptotic
process that occurs during grain filling, depending on the stage
of endosperm development [10]. The constant movement of the
assimilate needs to be strongly sourced and has to have
adequate sink demand to sustain the driving gradient [11].

2.2 Role of photosynthetic efficiency and assimilate
translocationinyield formation

The amount of assimilates that is produced depends on the
efficiency of photosynthesis. However, the amount of grain is
also dependent upon whether the assimilates are translocated
or not. In highly productive varieties, a significant percentage of
post-anthesis carbohydrates is dedicated to the formation of
panicles [12]. Infertile soils often require constant
photosynthetic activity in the upper leaves of the grain, a
characteristic often associated with superior genotypes during
the grain-filling stage [13]. Additionally, the re-adoption of non-
structural carbohydrates stored in culms and sheaths prior to
anthesis complements grain filling in conditions of reduced
photosynthetic activity later [14]. As a result, the process of
yield formation relies on the combined action of assimilation,
storage and remobilisation [13], [14].

2.3 Factors controlling source activity: chlorophyll content,
nitrogen availability, and leafarea index

The chlorophyll concentration, nitrogen status, and canopy size
are the factors on which the source activity is based [15]. One of
the significant factors that determines the ability to carry out
photosynthesis is the content of chlorophyll, and the contents of
nitrogen stimulate the synthesis of chlorophyll and the activity
of Rubisco [16]. The high level of nitrogen may, however, favour
vegetative growth atthe cost of reproduction allocation [17].

The interception of light is usually measured as the leaf area
index (LAI); a good LAI will not shade itself [18]. The stay-green
quality, which ensures the persistence of green leaf areas during
grain filling, extends the activity of sources and, therefore,
increasesyield [19].

2.4 Factors controlling sink strength: number of spikelets,
panicle size, and grain-filling capacity

The strength of the sink depends on the number of spikelets, the
size of the panicle, and the ability of the grain to store the
assimilates [2]. The determination of spikelet number takes
place at the stage of panicle initiation, and the process of grain
filling depends on the activity of endosperm cells and the
effectiveness of the conversion of sucrose to starch [20]. The
imbalance between the supply of sources and sink capacity
leads to partial filling or sterility; big panicles have a higher
demand for assimilate flux, and when the capacity of sources
cannot be matched, the weight of grains reduces [21]. As a
result, the concurrent control of source efficiency and sink
utilisation is one of the important genetic improvement
strategies [8].

2.5 Importance of maintaining coordination between
source supply and sink demand

The formation of yield in rice is dependent on the strict
coordination between sink and source processes. Overactivity
of the source leads to carbohydrate accumulation and the
initiation of feedback inhibition of photosynthesis. In contrast,
overactivity of the sink may result in incomplete grain filling
[22]. Such a source-sink balance is also developmental,
depending on the genotype, management regime and
environmental conditions. A synchrony between the supply and
demand will ensure an endless flow of assimilate that will be
filled, the grain will fill up efficiently, and the harvest index will
behigherinanirrigated environment [6].

In essence, the source-sink association is a dynamic
physiological network controlled by photosynthetic
production, the transport of assimilates, and sink growth.
Understanding and controlling this coordination through
breeding and agronomic interventions will remain crucial to
enhancingyield potential in irrigated rice systems [2].

3.Physiological Basis of Source-Sink Manipulation

The manipulation of the source-sink ratio in rice changes the
allocation of carbon and nitrogen between the vegetative and
reproductive structures [23]. These changes are mediated
through tissue shedding or improvement (defoliation, spikelet
thinning), changes in metabolic fluxes in photosynthesis,
respiration, or starch synthesis, and signalling changes that
control assimilate partitioning [24].

3.1 Regulation of Carbon and Nitrogen Allocation

The balance between source and sink compartments controls
the events of loading, translocation, and unloading of phloem,
determining whether assimilates are directed toward
vegetative growth, storage organ development, or grain
maturation [25]. The lowered osmotic potential is maintained
by potent sinks, such as growing grains. It plays a role in
unloading sucrose, followed by starch accumulation in the
endosperm [26]. On the other hand, under the condition of
excess rates of assimilate supply over sink demand,
carbohydrates enter foliar and stem tissues, triggering a
feedback-mediated inhibition of photosynthetic gene
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expression and the activity of key enzymes including the
ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)
and the sucrose-phosphate synthase, which in turn regulates
the flux of the single enzyme, sucrose-phosphate synthase [27].
Nitrogen allocation has a coupled (yet not perfectly
synchronised) relationship with carbon, with the exportation of
amino acids and their remobilisation of stem tissues supporting
grain protein synthesis [6]. This is determined by the relative
provisioning of carbon and nitrogen, which determines the
starch-to-protein ratio in the endosperm. Root- and grain-based
cytokinins, combined with changes in the concentrations of
auxin and abscisic acid, serve as hormonal cues that enhance
sink strength by modulating the level of cellular proliferation
and phloem unloading potential [28].

3.2 Effects of Defoliation and Spikelet Removal

Defoliation lowers photosynthetic capacity, although it may
induce compensatory photosynthetic activity in the remaining
foliage, depending on the timing, extent, and presence of
carbohydrate stores [29]. A strong post-anthesis defoliation
episode suppresses grain filling. However, the selective loss of
old leaves can increase canopy light penetration [3]. Spikelet
removal reduces sink capacity and canlead to an increase in per-
grain weight; however, severe sinkage can inhibit
photosynthetic source activity and leave stored reserves
unsaturated. A further alteration in protein content and the
general grain quality could be attributed to the reduced nitrogen
contentgiven to grains [30].

3.3 Photosynthetic Compensation and Remobilisation
Photosynthetic compensation enhances the rate of carbon
fixation per unit leaf area but typically does not recover whole-
plant photosynthetic rates after significant tissue losses [14].
The supply of sink demand is met by the remobilisation of non-
structural carbohydrates and nitrogen within culms, sheaths
and leaves during the period of grain filling when
photosynthetic activity is reduced. However, overextraction can
lead to a reduction in structural integrity or increase the risk of
lodging [31].

3.4 Role of the Flag Leafand Practical Implications

The flag leaf is a significant source of assimilates at the early
stages of grain filling, due to its high photosynthetic rate and
proximity to the vasculature, compared to the panicle. It
significantly reduces the weight of grains, with the most notable
effect occurring in circumstances where carbohydrate reserves
are limited [32]. Studies of source-sink interactions determine
critical levels past which remobilisation processes and
compensatory mechanisms cannot maintain yield levels [25].
Based on this, successful agronomic solutions are required to
maintain source activity, stay-green phenotypes, and nitrogen-
use efficiency, while also increasing sink capacity by modifying
panicle architecture and increasing the number of endosperm
cells [13]. The order of the sequence of signal events should be
outlined in future studies. The molecular pathways of unloading
and reserve mobilisation should be explained, which will allow
for achieving repeatable yield improvements in the irrigated
state [33].

4. Morpho-Physiological Responses to Source-Sink
Manipulation

4.1 Impact on Vegetative Architecture and Biomass
Distribution

Alteration of source-sink dynamics affects the number of tillers,
plant height, and dry matter accumulation, and the outcome of
the intervention depends on the timing, severity, and genotype
of the intervention [7]. Redispersing all the foliage before
panicle development reduces tiller development and survival,
with a constrained supply of assimilates needed by the axillary
buds. On the other hand, the loss of sink through the elimination
of panicles or spikelets at an early stage may stimulate tillering
at a later stage, as the assimilates are redirected to vegetative
growth [34]. Similarly, a constraint in source activity during
stem elongation inhibits the growth of internode and ultimate
plant height; nevertheless, a corresponding decline in sink
demand can maintain or even increase plant height [5]. Total
above-ground biomass decreases with persistent source
restriction, but can be characterised by a slight increase after
sink depletion [35]. However, the stage of development
regulates the partitioning of biomass among the leaves, stems
and panicles. On the one hand, minor sink cuts could trigger
organ growth. On the other hand, large-scale or untimely
interventions oftenlead to a decrease in overall yields [8].

4.2 Carbon Fluxes: Apparent Translocation Rate, NAR, and
RGR

The apparent translocation rate (ATR), which is the ratio of
vegetative dry matter invested in grains, increases with the sink
strength requirement and decreases as sink strength declines
[36]. Nevertheless, ATR can also be misleading without the use
of isotope-based flux measurements, as changes in biomass will
change the numerator in the computation [37]. The net
assimilation rate (NAR) decreases due to defoliation, resulting
in a decrease in canopy area; however, it can increase on a per-
leaf-area basis in the event of photosynthetic compensation [3].
Relative growth rate (RGR) tends to decrease with source
limitation. It may exhibit a temporary rise in response to sink
reduction, provided that vegetative growth is maintained [38].

4.3 Source Size and Comparative Effects

The quantity of leaf area and its duration have a significant
impact on the distribution of assimilates during the grain-filling
stage [23]. A high leaf area index (LAI) and late senescence help
maintain photosynthetic activity, thereby reducing reliance on
stem carbohydrate reserves [39]. On the contrary, leaf loss
reduces the number of grains. It promotes assimilate
remobilisation, but spikelet loss increases the average grain
weight and suppresses stem loss. The answers are
asymmetrical; moderate sink-source reduction can alleviate
grain filling, but simultaneously reduces the total yield [40].

5.Phenological Responses

The manipulation of source-sink relationships is not only
responsible for altering the distribution of biomass but also for
changing the timing of major developmental processes.
Phenological checkpoints, such as panicle initiation, anthesis,
and the length of grain filling in irrigated rice, are dynamically
responsive to internal carbon-nitrogen balance and hormonal
cues[8].
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5.1 Influence on Panicle Initiation, Flowering, and Grain-
Filling Duration

Changing source strength (e.g., through defoliation or extreme
nitrogen restriction) often delays the transition from the
vegetative to the reproductive developmental stage, as the
amount of assimilates necessary to maintain panicle
differentiation is inadequate [41]. Conversely, lowering sink
demand by removing the spikelet or panicle often does not slow
down reproductive development and can prolong grain filling,
as competition for assimilates among the spikelets is reduced
[42]. The timing of grain filling is highly reliant on the source-
sink relationship. The limitation of sources in the early grain-
filling phase tends to shorten the filling time span and decrease
the ultimate grain weight because the senescence rate increases
[3]- On the other hand, once sink size is reduced, the remaining
grains can fill longer or at a higher rate, as the availability of
assimilates per grain has increased [43].

5.2 Developmental Delays or Accelerations Due to
Manipulation Timing

Defoliation at an earlier stage, before panicle initiation, is
known to slow the plant's growth significantly. This
phenomenon can be explained by the fact that the limited
carbon pool is used to sustain maintenance mechanisms and
root development [34]. Conversely, at the timing of or after
anthesis, defoliation causes insignificant changes in flowering
time. However, it leads to a faster onset of leaf senescence,
thereby shortening the period of grain filling [44]. The inverse
experimental perturbation is the removal of spikelets. Early
thinning has the potential to tune hormone signalling -
specifically cytokinins - which may alleviate senescence and
increase the lifespan of the remaining spikelets during grain
filling [45]. When the intervention is used after endosperm cell
division, it tends to increase the rate of grain filling rather than
affecting the flowering date [46].

5.3 Phenological Timing and Yield Regulation Under
Irrigated Conditions

In irrigated rice, the yield effects of functional changes in
phenology have a significant effect on yield outcomes, despite
the non-limiting nature of the water supply [47]. Optimal yield
must be achieved by matching peak source capacity, high
photosynthetic leaf area, and optimum nitrogen nutrition with
peak sink demand, including grain set and the early filling phase
[3]. Delayed flowering will move grain filling to suboptimal
meteorological conditions, increasing the probability of sterility
despite adequate irrigation. Conversely, when the period of
grain filling is prolonged, it may increase yield as long as
assimilates remain high and the functional integrity of leaves,
including stay-green properties, is intact [33]. Genotypic
diversity also helps buffer these findings; cultivars with greater
phenological stability or a more adaptive sink-setting window
tend to exhibit more consistent performance across
heterogeneous conditions.

5.4 Critical Perspective

Phenology both reacts to and regulates source-sink processes.
Perturbation experiments of source or sink are usually sensitive
to phenological plasticity; however, the extent and direction of
such plasticity depend on when the perturbation is applied, the
reserve status of the plant, and the hormonal feedback
morphologies that mediate developmental transitions [3], 48].

When breeding and managing crops in irrigated environments,
focusing on achieving traits that maintain the balance between
demand and supply of sinks and sources of agriculture, rather
than simply shifting one side of the equation, islikely to generate
more consistent improvements in season-environment yield
[49].

6.Biochemical and Molecular Responses

The process of source-sink manipulation of rice triggers a
cascade of biochemical and molecular adaptations that re-
establish the assimilation, storage, and remobilisation of carbon
and nitrogen. These reactions include pigment turnover, protein
turnover, enzyme regulation and transcriptional regulation,
which together dictate the assimilate partitioning and affect
yield potential.

6.1 Changesin Chlorophyll, Protein, and Nitrogen Levels
The decreased source capacity or accelerated inhibition of sink
activity typically results in a decrease in the chlorophyll content
of the leaves, serving as an indicator of both the destruction of
photosynthetic proteins and the release of nitrogen from the
foliage to the grains [50]. Reductions in the levels of Rubisco and
chlorophyll-protein complexes coincide with the onset of
proteolytic enzymes that promote the amino-acid recycling
during grain filling. The balance between the source and sink of
nitrogen concentrations in grains [51]. When there are large
sinks and little source nitrogen, grains have a low protein level.
In contrast, when sinks are weak, grains have a high
concentration of nitrogen, as long as the leaf nitrogen is
adequate [52]. Proteins and autophagic genes coordinate this
remobilisation mechanism via proteases, autophagic amino
acid transporters, and autophagic amino acid reuptake
transporters, which are proximal to the proximal ductal cells in
the post-anthesis phase [53]. These kinds of responses are
spatially heterogeneous in the canopy; upper foliage and flag
leaf, in particular, maintain chlorophyll and nitrogen for more
extended periods, thereby sustaining photosynthesis during
grain development [54], [55]. Senescing-delaying agronomic
interventions, including split nitrogen fertilisation, increase the
availability of sources and improve the coordination of carbon
and nitrogen metabolicinteractions [56].

6.2 Alteration in Starch and Sucrose Metabolism Under
Source or Sink Stress

source- sink perturbations induce dynamic reprogramming of
carbohydrate metabolism. Increased sink demand leads to
increased synthesis and export of sucrose by upregulating
sucrose-phosphate synthase (SPS) and other complementary
enzymes involved in loading sucrose into the phloem [3], [7]. As
source capacity decreases, culms and sheaths store starch,
which is subjected to hydrolysis, and the resulting soluble
sugars are exported to aid in grain filling. On the other hand,
attenuation of sink demand (e.g., by spikelet removal) can cause
either the retention of sucrose in leaves and stems or the
reversal of photosynthesis through feedback [35]. The enzymes
are important metabolic enzymes, such as ADP-glucose
pyrophosphorylase (AGPase) in starch synthesis, which is also
known as SPS in sucrose production, along with amylases that
mediate remobilisation, are key control nodes of these
transitions [57].
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6.3 Role of Sucrose Synthase and Invertases in Assimilate
Partitioning

The invertases and sucrose synthase (SuSy) are relevant to the
issue of sink strength and phloem unloading efficiency in rice
[58]. SuSy, specifically, is excessively rich in the synthesis of
grains and catalyses the separation of sucrose to furnish the
stocks necessary for the formation of starch and cell walls, and
therefore, indicates active sink metabolism [59]. Saccharolytic
enzymes break down sucrose in the apoplast to produce steep
hexose gradients, which help maintain phloem flow into sink
tissues [60]. Vacuolar and cytosolic enzymes regulate
intracellular sugars and osmotic pressure [61]. The changes in
the activity, localisation, and post-translational control of these
enzymes are commonly observed after source or sink
manipulations and usually explain the genotype-specific
differences in remobilisation efficiency and general partitioning
ofassimilate [62].

6.4 Expression of Genes Related to Carbon and Nitrogen
Assimilation

Molecularly, source-sink manipulations have effects on the
transcriptional regulation of genes involved in photosynthetic
machinery, carbohydrate catabolism, sucrose transport, and
nitrogen assimilation [50]. The downregulation of genes
encoding major photosynthetic components, including rbcL and
light-harvesting complex (LHCB) proteins, often occurs in
response to sink limitation due to sugar-mediated feedback
[14]. In contrast, the upregulation of phloem-loading and
transporter genes typically occurs in response to an increase in
sink demand [63]. Genes in carbohydrate metabolism, e.g.,
sucrose-phosphate synthase (SPS), sucrose-synthase (SuSy),
ADP-glucose pyrophosphorylase (AGPase), and cell-wall
invertase (CWINV) and genes in sugar transporters (SUT) and
SWEET family members are regulated to favour an efficient flow
of assimilate [64]. Genes related to nitrogen (glutamine
synthetase/glutamate synthase, nitrate transporters and
amino-acid exporters) are co-regulated with carbon flux,
especially on active remobilisation to grains [65]. Cellular sugar
status is linked to transcriptional and metabolic regulation
through key signalling molecules, such as trehalose 6-
phosphate (T6P) and SNF1-related protein kinase 1 (SnRK1),
and orchestrates sink development, senescence, and assimilate
remobilisation via phytohormones, including cytokinins,
abscisic acid, and auxin [66]. However, the effects of these
molecular signals on the entire assimilate partitioning of whole
plants have not been fully determined when relevant source-
sink manipulation controls are applied in the field [60].

7.Yield and Yield Attributing Traits

In rice, adjusting the source-sink relationship alters the yields,
including the number of panicles, their size, spikelet fertility,
grain filling, and the harvest index, all of which change [34].
These traits depend on the manipulation in terms of timing,
degree, and direction. These relationships help explain why
yield responses can sometimes be counterintuitive when field
conditions change during adjustments to source and sink [7].

7.1Effects on Panicle Number and Panicle Length

The number of panicles per unit area or per plant is very much
affected by the strength of the source in the vegetative phase, up
to the stage of reproduction of the plant [20]. Reduced
photosynthetic ability or carbohydrate distribution before the
commencement of panicle development often leads to a low

panicle count, due to the inability of axillary buds to develop or
the abortion of panicle primordia [67]. Differentiation dictates
panicle length and branching, which are also limited by the
availability of assimilates and nitrogen [57]. In contrast, the
release of sink demand (e.g., by removing spikelets or tillers)
can cause plants to redistribute assimilates to the remaining
tillers, resulting in longer or more heavily filled panicles.
However, these benefits rarely (compensation) offset the
reduction in the number of panicles in the crop [68].

7.2 Spikelet Fertility and Grain Filling Percentage
Assimilating supply, hormonal regulation, and water balance
during flowering determines spikelet fertility. Before and
during anthesis, if source limitation occurs, there is a higher risk
of sterility because floral organs and developing embryos
require a high level of energy [8]. Embryo viability is reduced,
even with moisture, when there is an insufficient supply of
carbohydrates or an imbalanced C: N. Grain filling percentage is
a reflection of source-sink balance during ripening. If
photosynthetic activity is poor or there is early senescence, the
filling period is shortened. Source supply sustained improves
the percentage of grains thatare filled [69].

7.3 Source Limitation by Leaf Removal

Experimental leaf removal illustrates the impact of reduced
source strength. Losing leaves before panicle initiation
decreases panicle and spikelet formation, while defoliation at
anthesis primarily reduces grain fill and grain weight [35]. Ifleaf
loss is severe, however, full yield recovery is unlikely, even if
plants do partially compensate by mobilising stem reserves and
increasing the photosynthetic rate ofthe remainingleaves [70].

7.4 Sink Reduction by Spikelet Removal

By thinning spikes, the remaining grains will become heavier
because they will receive resources that would typically be split
among more grains [26]. Under adequate nitrogen, this can
increase the density of the smaller-than-normal grains, reduce
chalkiness, and increase the protein concentration. A decrease
in grain yield will result, and this will vary depending on the
variety. Some high-sink varieties will show slight improvement
[45].

7.5 HarvestIndexand ManagementImplications

The harvest index indicates how effectively plants distribute
their nutrients. Source limitation usually reduces HI, but
moderate sink reduction can increase it, albeit at the cost of total
yield. Genotype x environment interactions and management
factors, such as nitrogen timing, irrigation, and canopy
protection, greatly affect results [71]. Connecting high sink
potential with traits that support source activity, such as
delayed senescence and efficient nutrient use, is crucial for
achieving stable yield gains underirrigated conditions [72].

8.Integration of Findings and Physiological Implications

A combination of morphological, biochemical, and yield
reactions gives a better physiological insight into the assimilate
allocation in irrigated rice. The number of tillers, panicle size,
and leaf area are morphological variables that form the basis of
the system for carbon and nitrogen production [51]. The
number of chlorophyll content, the activity of Rubisco, the
activities of invertases, sucrose phosphate synthase, and ADP-
glucose pyrophosphorylase are biochemical indices that explain
the ability of the plant to produce as well as mobilise assimilates
[39].

864.

© 2025 AATCC Review. All Rights Reserved.



Pragya Mahobe et al.,, / AATCC Review (2025)

The combined products of these physiological processes are
reflected in yield-related parameters, i.e. panicle number,
spikelet fertility, grain weight, and harvest index (Figure 2).
Canopy photosynthesis and sucrose export are limited by a
reduction inleaf area or chlorophyll concentration, and result in
reduced spikelet fertility and grain weight under conditions of
reserve inadequacy [73].

On the other hand, the actions of invertase and sucrose synthase
in developing grains encourage the unloading and cleavage of
sucrose, thereby enhancing sink strength and stimulating starch
accumulation [57]. The preservation of green leaf cover, along
with adequate levels of nitrogen, during the grain-filling period
promotes photosynthesis. It maintains a balanced C: N ratio,
thereby enhancing grain weightand protein levels [8].
Experiments on defoliation demonstrate the source limitation
effects: a decrease in photosynthetic output triggers short-term
compensatory processes, including increased activity of the
remaining foliage and nitrogen redistribution, as well as the
remobilisation of culm reserves through sugar transport [12].
The responses to yield depend on the size of the reserves and
time dynamics; the lack of these reserves causes reduced
spikelet fertility and grain mass [72]. Conversely, spikelet
removal decreases the aggregate sink demand, leading to
carbohydrate retention in the leaves and stems, a feedback-
based inhibition of photosynthesis, and increased grain filling in
the remaining spikelets, albeit at the expense of total yield [8].
These manipulations reinforce the fact that the coordination of
source capacity with sink demand dictates yield.

Three main principles have been found to deliver the best yield:
(a) maintain functional leaf area and chlorophyll content during
grain filling through the management of the timing of nitrogen
and water; (b) ensure that the sink potential, including the
number of panicles or spikelets, equals sustainable source
strength and ability of remobilisation; (c) ensure that the peak
photosynthetic activity is matched with peak sink demand [11].
Physiological limits determine the level of compensation that
can be achieved before a significant reduction in yield occurs.
Although informative, the harvest index must be considered in
conjunction with other parameters, such as LAI, NAR, enzymatic
activity, and isotopic composition [73]. Ultimately, sustainable
yield gains require a combination of genetic, biochemical, and
agronomic manipulations that preserve the activity of the
source, enhance the utilisation of sinks, and maintain balance in
varying field conditions [74].

9.Future Perspectives

Enhancing rice yields by fine-tuning the balance between the
source and sink is an ambitious yet complex task. It involves a
blend of genetics, phenotyping, and modelling in actual
irrigated settings. Success hinges on enhancing the efficiency of
both the source and sink, while also ensuring they function
effectively together over time.

9.1 Genetic Approaches to Enhance Source Efficiency and
Sink Capacity

The strategies of genetic improvement should be based on
complementary characteristics along the source-sink
continuum.

On the source side, the prolongation of leaf life and expansion of
photosynthetic capacity by stay-green phenotypes help
maintain chlorophyll, Rubisco, and stomatal activity during
grain filling, thereby supporting photosynthetic activity [2].
Enhancement of nitrogen-use efficiency through further uptake,
assimilation (GS/GOGAT activity), and remobilisation facilitates
leaf nitrogen supply during grain growth and development and
reduces the dependence on high fertiliser application [6].
Modulation of transport and signalling, via transporters such as
SUTs and SWEETS, and regulatory pathways like T6P/SnRK1,
maintains the export of sucrose and reduces feedback inhibition
when sink strength is low [75]. From the sink point of view,
breeding programs must focus on creating effective panicle
structures that maximise the number of spikelets per unit and
fertility, rather than panicle size. The starch accumulation
potential is enhanced by utilising endosperm cellularity and the
activity of key carbohydrate-metabolising enzymes, such as
sucrose synthase, invertases, and ADP-glucose
pyrophosphorylase [7]. Moreover, strengthening storage and
remobilisation of carbohydrates in the stem supports yield
stability in the plant without compromising plant structural
integrity.

9.2 Breeding Strategies and Modern Tools

Genomic selection has the potential to harness moderate-effect
alleles that contribute to photosynthetic persistence, nitrogen
use efficiency, and sink strength. This approach can yield
reliable results that are consistent across various environments.
Moreover, CRISPR-based editing enables precise adjustments to
gene expression, effectively balancing supply and demand.
When we combine high-throughput phenotyping with
genomics, we can focus on selecting traits that work together,
rather thanjustexamining individual factorsinisolation.

9.3 High-Throughput Phenotyping and Modelling

Remote sensing and close-range measurements using drones
equipped with cameras, hyperspectral imaging, and lidar can
quantify leaf area index, plant chlorophyll content, temperature,
and spike traits, thereby capturing the dynamic processes of
source and sink changes over time. Gas exchange and
chlorophyll fluorescence platforms provide mechanistic
insights, while isotope and metabolomics analyses track carbon
and nitrogen fluxes. Combining hyperspectral telemetry data
with plant models (e.g., ORYZA) or functional structure models
helps predict how changes in LAI, nitrogen dynamics, and spike
traits affect assimilation fluxes and yield [76], [77]. Machine
learning and data assimilation can improve predictive
capabilities, identify periods of limited source or sink
availability, and support management throughout the growing
season [77].

9.4 1deotypes for Balanced Source-Sink Coordination

An effective ideotype should balance achievable source and sink
traits under irrigated systems. Ideal features include moderate-
to-high spikelet number with high fertility, prolonged green
canopy, efficient phloem loading and unloading, adequate stem
reserves with safe remobilisation, balanced NUE, and resilience
tolodging and diseases [78], [80].
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Figure 1: Source-sink pathway in rice showing sucrose production in leaves, phloem
loading and transport, unloading into grains, and conversion into starch during grain
filling
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Figure 2: Source-sink dynamics during rice grain development, highlighting shifts
between sink-limited and source-limited states and the conditions that lead to
optimised grainyield

10. Conclusion

The collective effect of photosynthesis, assimilate translocation,
remobilisation, and sink development on grain yield can be
explained by studies of source-sink manipulation in rice.
Experimental defoliation and sink thinning help illustrate the
constraints of compensatory photosynthesis and mobilisation
of stem reserves, thereby highlighting the trade-offs between
grain number and grain weight. The yield with sustainable gain
under irrigation requires the integration of sustained source
activity, such as functional leaf area, nitrogen status, and
transporter activity, into the real sink capacity, including panicle
architecture and endosperm filling. The Research gaps that are
disadvantaged include the temporal dynamics of signalling
between the source and sink, the molecular control of unloading
and remobilisation of phloem, and the development of field
diagnostics that could be effectively used in distinguishing
between source and sink limitation across dissimilar genotypes
and environments.
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