

Review Article
Open Access

Assessment of demographic predictors of awareness on health effects and preventive measures of indoor air pollution

**Regatipally Divya¹ Geeta S Chitagubbi¹ Rajeshwari M Desai² and Hosmath JA³ **
¹Department of Resource Management and Consumer Science, College of Community Science, Dharwad, India

²Department of Family Resource Management, AICRP schemes, Dharwad, India

³Department of Agril Meteorology, College of Agriculture, Dharwad, India

ABSTRACT

Indoor air pollution (IAP) is a critical but often overlooked environmental health issue, particularly in urban households. This study assessed the awareness of 150 respondents in Dharwad city, Karnataka, regarding the health effects of IAP and their preventive practices, along with the influence of socio-demographic factors. Data were collected using a self-structured, pre-tested interview schedule and analysed through descriptive statistics, weighted mean scores, chi-square test, correlation and ANOVA. The study faced challenges such as reliance on self-reported data, difficulty in assessing respondent's perceptions of long-term health effects of indoor air pollution and this study does not report the sources of IAP. Findings revealed that respondents were well aware of immediate health effects of IAP such as asthma, eye irritation, coughing, and headaches, but had limited awareness about long-term impacts, including cardiovascular disease, lung problems and cognitive decline. Preventive practices were largely confined to low-cost, visible measures such as maintaining cleanliness, ventilation, and avoiding indoor smoking, while the adoption of eco-friendly products, indoor plants, and air purifiers remained low. Education, occupation, income, and socio-economic status significantly influenced both awareness and preventive measures, whereas age and family type had no notable impact. The study highlights the need for targeted awareness programs and affordable interventions to bridge knowledge gaps and promote sustainable practices for mitigating IAP. The study contributes empirical evidence on demographic predictors of IAP awareness and highlights the need for targeted awareness programmes to fill the gap between awareness and practice to mitigate indoor air pollution.

Keywords: Indoor air pollution, awareness, health effects, preventive measures, socio-demographic factors, knowledge, household environment

INTRODUCTION

Indoor air pollution (IAP) is one of the most pressing environmental and public health challenges, with impacts ranging from respiratory irritation to chronic diseases. Unlike outdoor air pollution, IAP is less visible yet often more dangerous due to prolonged exposure in enclosed spaces. The World Health Organisation (2018) estimates that nearly 3 billion people worldwide rely on unclean fuels for cooking and heating, exposing them to harmful indoor pollutants. Indoor environments are contaminated by a combination of physical (temperature, humidity and particulate matter), chemical (formaldehyde, volatile organic compounds, carbon monoxide and nitrogen oxides) and biological agents (bacteria, fungi). Sources include combustion, building materials, furnishings, cleaning products and household activities. The U.S. EPA notes that indoor pollutant levels can be up to 100 times higher than outdoors (10). Health impacts of IAP are wide-ranging, from acute effects such as eye irritation, headaches, and asthma to long-term outcomes including cardiovascular disease, chronic obstructive pulmonary disease (COPD) and certain cancers (15).

Women and children are especially vulnerable due to their longer exposure times in domestic environments. Understanding public knowledge about IAP and the adoption of preventive measures is essential for designing effective interventions. This study, therefore, assesses respondents' awareness of health effects, their preventive practices and the role of socio-demographic factors in shaping these behaviours.

MATERIALS AND METHODS

A descriptive research design was adopted to assess respondents' awareness of health effects and preventive measures of indoor air pollution (IAP). The study was conducted in Dharwad city, Karnataka, India, across three localities: Gandhinagar, Saptapur and Gulgonjikoppa, with a total sample of 150 respondents selected through simple random sampling (50 from each area). A self-structured interview schedule was developed based on literature, pre-tested in a non-sample area and finalized after necessary modifications. The schedule collected general information (age, gender, family type, family size, education, occupation, income, and socio-economic status assessed using the Modified Kuppuswamy Scale, 2023) and specific information on awareness of health effects and preventive measures of IAP using three-point Likert scale. Data collection was carried out using personal interviews in an informal atmosphere to ensure accuracy. The data were analysed using descriptive statistics, Weighted Mean Score (WMS), chi-square test, correlation (Karl Pearson's r) and Analysis of Variance (ANOVA).

*Corresponding Author: **Regatipally Divya**

DOI: <https://doi.org/10.21276/AATCCReview.2025.13.04.944>

© 2025 by the authors. The license of AATCC Review. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

RESULTS AND DISCUSSION

Demographic profile of the respondents

The majority of the respondents were in the age group of 37 to 55 years (60.70%) followed by above 55 years (27.30%) and below 37 years age group (12.00%). Regarding family type, highest proportion was from nuclear family (69.30%) followed by joint family (30.70%), while none reported from extended family, reflecting modern urban structures (12). Graduates formed the largest educational group (29.33%) followed by primary education (16.68%), middle school (16.00%), illiterate (12.00%), high school (11.33%), PUC/diploma (9.33%) and least per cent of the respondents were post graduates (5.33%) suggesting a moderate education level that may support awareness of indoor environments (6). As for the occupation, majority was housewives (68.00%) followed by the service sector (28.67%) and self-employed (3.33%), indicating their key role in household environmental practices (2). The annual income of the majority of the respondents ranged between Rs. 282,423 to 630,378 (48.00%) followed by above Rs. 630,379 (28.67%) and below Rs. 282,423 (23.33%) as their annual income showed fair economic diversity (1) (14). Regarding the socio-economic status of the selected respondents, a higher percentage of them belonged to the upper lower class (39.33%) and upper middle class (32.00%) followed by lower-middle class (25.33%), while the least percentage belonged to the upper class (3.33%) and none were in the lower class (Table 1). The predominance of respondents in the middle-income brackets indicates a balanced representation of working-class families, which could influence their environmental awareness and priorities in household practices (2).

Knowledge on health effects of indoor air pollution

The majority (90.70%) of the respondents reported asthma (WMS 2.91) as a major health problem due to poor indoor air quality, followed by headache (87.30%, WMS-2.84) and eye irritation (84.70%, WMS-2.79). More than 70 per cent of the respondents perceived skin allergies (76.70%), cold and cough (76.00%), and reduced oxygen intake (70.70) as health issues. The higher awareness for common health problems might be due to the reason that these are short-term effects which can be easily affected and observed (4) (9) (11). Over 60 per cent agreed that indoor pollution causes fatigue (66.70%), increases lung problems (60.00%) and it doesn't affect sleep quality (60.70%) which indicates the knowledge gap. More than half of the respondents were aware that IAP increases the risk of allergies (57.30%), effects mental well-being (55.30%) and causes heart problems (54.70%) with WMS ranging from 2.23 to 2.75. Less than half of the respondents reported that air pollution doesn't reduce cognitive function (47.30%) and only 15.30 per cent agreed that IAP doesn't affect children's health, depicting their high awareness regarding this aspect. The respondent's average awareness regarding long-term health effects and poor awareness with respect to above mentioned psychological problems highlights the awareness gap about long-term health effects of indoor air pollution (5) (Table 2).

Knowledge on preventive measures to combat indoor air pollution

The findings from Table 6 highlight that the respondents had exhibited higher agreement for certain visible and culturally reinforced practices such as avoiding indoor smoking (95.30%), maintaining cleanliness (92.00%), keeping windows open (86.70%), using non-toxic paints (80.00%) and ensuring proper

ventilation measures that are low-cost and simple to implement (1). These actions are likely driven by immediate health concerns and traditional household norms. However, a notable gap exists in the adoption of measures that involve higher knowledge or behavioural shifts such as the use of eco-friendly products & fuels (47.30% and 45.30%), indoor plants (32.70%) and minimizing the use of chemical cleaners (46.00%) (7). Minimising the use of synthetic fragrances, use of candle or incense in indoors and reducing the use of air fresheners was practiced by 48.00, 44.00 and 36.00 per cent of the respondents, respectively. Despite of proven benefits, the relatively low practice of using indoor plants or eco-friendly cleaning agents indicates a lack of information, perceived inconvenience or cost barriers. The less frequent use of air purifiers (13.33%) and HVAC maintenance (38.70%) suggests that their higher costs might limit regular usage. Regardless of good knowledge on associated health effects of IAP, respondents were not practicing measures to mitigate IAP, probably due to their busy lifestyles or unavoidable usage of gadgets, cleaning products, etc (Table 3).

Relationship between demographic profile and knowledge level on indoor air pollution

Table 4 presents the association between respondents' demographic profiles and their awareness regarding the health effects of indoor air pollution (IAP) and corresponding preventive measures. The results indicate that age and family type did not show any significant association with either awareness of health effects or preventive measures, suggesting that awareness of IAP-related health issues is independent of these factors. In contrast, education demonstrated a strong positive association with both awareness of health effects ($\chi^2 = 25.21, p < 0.05$; $F = 3.11, p < 0.05$) and preventive measures ($\chi^2 = 53.61, p < 0.01$; $F = 9.40, p < 0.01$). This indicates that respondents with higher educational qualifications had better awareness of IAP risks and were more likely to implement preventive strategies (3). Occupation was significantly associated with awareness of preventive measures ($\chi^2 = 16.45, p < 0.05$; $F = 9.68, p < 0.01$) and marginally with awareness of health effects ($F = 4.93, p < 0.05$), suggesting that professional exposure or work environment might influence the understanding and adoption of mitigation practices (13). Similarly, annual income was significantly related to awareness of health effects ($\chi^2 = 16.61, p < 0.05$; $F = 10.99, p < 0.01$) and preventive measures ($\chi^2 = 10.28, p < 0.05$; $F = 4.67, p < 0.05$), indicating that financial capacity may enhance access to information and resources for reducing exposure. Socioeconomic class also demonstrated a strong association with both awareness of health effects ($\chi^2 = 16.76, p < 0.05$; $F = 5.44, p < 0.05$) and preventive measures ($\chi^2 = 32.02, p < 0.01$; $F = 14.74, p < 0.01$), further reinforcing the role of social and economic factors in shaping knowledge and behavior concerning indoor air quality (8). Table 5 illustrates the correlation between respondents' demographic profiles and their knowledge of indoor air pollution (IAP), focusing on awareness of health effects and preventive measures. The results indicate that age and family type exhibited very low and non-significant correlations with awareness of health effects ($r = 0.099, 0.053$) and preventive measures ($r = 0.071, 0.007$), suggesting that these demographic characteristics have minimal influence on respondents' understanding of IAP. In contrast, education demonstrated a significant positive correlation with awareness of health effects ($r = 0.296, p < 0.01$) and preventive measures ($r = 0.446, p < 0.01$).

This finding emphasises that higher educational attainment enhances understanding of both the risks associated with IAP and the actions necessary to mitigate them. Occupation also showed a significant positive correlation with knowledge of health effects ($r = 0.194$, $p < 0.05$) and preventive measures ($r = 0.307$, $p < 0.01$), indicating that professional background or work-related exposure may influence awareness levels. Similarly, annual income and socioeconomic status (SES) were positively and significantly correlated with knowledge of health effects ($r = 0.321, 0.262$; $p < 0.01$) and preventive measures ($r = 0.247, 0.442$; $p < 0.01$). These results suggest that financial capacity and social standing contribute to greater access to information and resources for reducing indoor air pollution exposure (16).

Table 1: Demographic profile of the respondents n=150

Category	Frequency (f)	Percentage (%)
Age		
Below 37 years	18	12
37 to 55 years	91	60.7
Above 55 years	41	27.3
Family type		
Nuclear	104	69.3
Joint	46	30.7
Extended	0	0
Education		
Illiterate	18	12
Primary	25	16.68
Middle school	24	16
High school	17	11.33
PUC/Diploma	14	9.33
Graduate	44	29.33
Post graduate	8	5.33
Occupation		
Housewife	102	68
Self employed/business	5	3.33
Service	43	28.67
Annual income (in rupees)		
Below 282,422	35	23.33
282,422-630,378	72	48
Above 630,378	43	28.67
Socio economic class		
Upper (I)	5	3.33
Upper middle (II)	48	32
Lower middle (III)	38	25.33
Upper lower (IV)	59	39.33
Lower (V)	0	0

Table 2: Knowledge of respondents regarding health effects of indoor air pollution

Statement	Agree		Neutral		Disagree		WMS
	f	%	f	%	f	%	
Causes asthma	136	90.70	14	9.30	00	0.00	2.91
Leads to skin allergies	115	76.70	32	21.30	03	2.00	2.75
Doesn't reduce cognitive function	71	47.30	33	22.00	46	30.70	1.83
Increases the risk of heart problems	82	54.70	38	25.30	30	20.00	2.35
Doesn't affect children's health	23	15.30	19	12.70	108	72.00	2.56
Causes eye irritation	127	84.70	14	9.30	09	6.00	2.79
Leads to headache	131	87.30	14	9.30	05	3.30	2.84
Causes fatigue	100	66.70	36	24.00	14	9.30	2.57
Sleep quality is not affected	91	60.70	26	17.30	33	22.00	1.61
Causes cold and cough	114	76.00	31	20.70	05	3.30	2.73
Impacts mental well-being	83	55.30	19	12.70	48	32.00	2.23
Reduces oxygen intake	106	70.70	12	8.00	32	21.30	2.49
Increases allergic reactions	86	57.30	28	18.70	36	24.00	2.33
Increases the risk of lung problems	90	60.00	17	11.30	43	28.70	2.31

Note: f=Frequency, %= Percentage, WMS- Weighted Mean Score

Table 3: Knowledge on practice of preventive measures to combat indoor air pollution

Statement	Always		Sometimes		Never		WMS
	f	%	f	%	f	%	
Use of eco-friendly cooking fuels	68	45.30	26	17.30	56	37.30	2.08
Use of indoor plants	49	32.70	12	8.00	89	59.30	2.14
Avoid smoking indoors	143	95.30	03	2.00	04	2.70	2.93
Improve cross ventilation	95	63.30	23	15.30	32	21.30	2.42
Use of air purifiers	20	13.33	10	6.67	120	80.00	1.33
Regular cleaning of the house	138	92.00	12	8.00	00	0.00	2.92
Keep windows open	130	86.70	20	13.30	00	0.00	2.87
Minimise the use of chemical cleaners	69	46.00	10	6.70	71	47.30	1.99
Use non-toxic paints	120	80.00	30	20.00	00	0.00	2.80
Reduce the use of air fresheners	54	36.00	77	51.30	19	12.70	2.23
Maintain HVAC systems	58	38.70	72	48.00	20	13.30	2.25
Minimise the use of synthetic fragrances	72	48.00	31	20.70	47	31.30	2.17
Use eco-friendly cleaning products	71	47.30	09	6.00	70	46.70	2.01
Ensure proper ventilation during household activities	117	78.00	10	6.70	23	15.30	2.63
Limit the use of candles or incense indoors	66	44.00	45	30.00	39	26.00	2.18

Note: f=Frequency, %= Percentage, WMS- Weighted Mean Score

Table 4: Association between demographic profile and knowledge of respondents about health effects of indoor air pollution n=150

Variables	Awareness on health effects		Awareness on preventive measures	
	χ^2	F-value	χ^2	F-value
Age	4.12 ^{NS}	0.92 ^{NS}	1.35 ^{NS}	0.78 ^{NS}
Family type	1.76 ^{NS}	0.17 ^{NS}	0.63 ^{NS}	0.70 ^{NS}
Education	25.21*	3.11*	53.61**	9.40**
Occupation	8.50 ^{NS}	4.93*	16.45*	9.68**
Annual Income (₹)	16.61*	10.99**	10.28*	4.67*
Socio economic class	16.76*	5.44*	32.02**	14.74**

NS- Non Significant, *indicates significant at 5% level, **indicates significant at 1% level,

Table 5: Relationship between demographic profile of the respondents and knowledge on indoor air pollution n=150

	Health effects	Preventive measures
Age	0.099	0.071
Family type	0.053	0.007
Education	0.296**	0.446**
Occupation	0.194*	0.307**
Income	0.321**	0.247**
SES	0.262**	0.442**

** Correlation is significant at the 1% level

CONCLUSION

The study revealed that while most respondents were aware of the immediate health effects of indoor air pollution (IAP), such as asthma, eye irritation, coughing and headaches, awareness of long-term impacts like cardiovascular diseases, lung problems and cognitive decline was limited. Preventive practices largely focused on low-cost, visible measures such as cleanliness and ventilation, while adoption of eco-friendly products, indoor plants and air purifiers remained low. Education, occupation, income and socio-economic status significantly influenced awareness and practices, whereas age and family type had little impact. These findings highlight the need for targeted awareness programs and affordable interventions to bridge knowledge gaps and encourage broader adoption of effective preventive measures against IAP.

Future scope of the study

Future research may incorporate longitudinal designs to assess changes in awareness and practices over time and include objective measurements of indoor air quality parameters. Intervention-based studies evaluating the effectiveness of educational programmes and low-cost technological solutions could further strengthen policy and community-level recommendations. Expanding the study to rural and peri-urban settings would also provide comparative insights.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Acknowledgements

The authors express their sincere gratitude to all the respondents who participated in the study and to the institutions that provided support and facilities for conducting this research.

REFERENCES

1. Afolabi, O., Awopeju, O., Aluko, O., Deji, S., Olaniyan, B., Agbakwuru, L., ... & Ojo, B. (2016). Awareness of indoor air pollution and prevalence of respiratory symptoms in an urban community in South West Nigeria. *Nigerian Journal of Health Sciences*, 16(1), 33-38
2. Alex, P. K. G. K., Kiran, K. G., Baisil, S., Shameena, A. U., & Badiger, S. (2018). Assessment of awareness and attitude of rural women towards ill-effects of indoor air pollution and their perception regarding alternate cooking fuel usage in Mangalore. *Int J Community Med Public Health*, 5(9), 4092-4097.
3. Araune, P., De Vera, G., Agudong, S. S., Abarquez, J. C., Apag, H. C., Basalo, P. K., ... & Fullo, J. J. (2024). Assessing Household Awareness of Indoor Air Pollution in Cagayan de Oro City: Implications for Health Promotion. *International Journal of Nursing and Health Services (IJNHS)*, 7(3), 77-85.
4. Dwivedi, S., Taushiba, A., Zehra, F., Gupta, S. K., & Lawrence, A. (2023). Revelations to indoor air pollutants and health risk assessment on women: a case study. *Hygiene and Environmental Health Advances*, 5, 100038.
5. Farah, N., & Khan, I. A. (2015). Awareness about the health impacts of indoor air pollution on rural women in District Faisalabad. *J. Glob. Innov. Agric. Soc. Sci*, 3, 90-95.
6. Kanwal, N., Saba, N., & Batool, A., (2025), Perceived Air Pollution and Health Risks: A Cross-Sectional Study in Pakistan. *Physical Education, Health and Social Sciences*, 3(1), 77-85.
7. Kaur, D., Sidhu, M., & Bal, S., (2016), Practices adopted by rural and urban housewives to combat indoor pollution. *Advance Research Journal of Social Science*, 7 (1), 81-87
8. Low, B. S., Selvaraja, K. G., Ong, T. H., Ong, K. K., & Koshy, S. (2020). Education background and monthly household income are factors affecting the knowledge, awareness and practice on haze pollution among Malaysians. *Environmental Science and Pollution Research*, 27(24), 30419-30425.
9. Osagbemi, G. K., Adebayo, Z., & Aderibigbe, S. (2009). Awareness, attitude and practice towards indoor air pollution (iap) amongst residents of Oke-Oyi in Ilorin. *The Internet Journal of Epidemiology*, 8(2).
10. Pitarma, R., Marques, G., & Ferreira, B. R. (2017). Monitoring indoor air quality for enhanced occupational health. *Journal of medical systems*, 41(2), 23.
11. Poojary, N. S., Kempaller, J. V., Kiran, N. U., Kundapur, R., & Krishna, N. K. (2015). Household survey on determinants of Indoor Air Pollution (IAP) and its health hazard awareness among women: a cross-sectional study. *Int J Preven Curat Comm Med*, 1(4), 120-124.
12. Poudel, A., (2023), Urban gardening in Bharatpur Metropolitan, Nepal. *Big Data in Agriculture*, 6(1), 06-09.

13. Qian, X., Xu, G., Li, L., Shen, Y., He, T., Liang, Y., ... & Xu, J. (2016). Knowledge and perceptions of air pollution in Ningbo, China. *BMC public health*, 16(1), 1138.
14. Rihn, A. L., Knuth, M. J., Behe, B. K., & Hall, C. R. (2023). Benefit information's impact on ornamental plant value. *Horticulturae*, 9(7), 740.
15. Seguel, J. M., Merrill, R., Seguel, D., & Campagna, A. C. (2017). Indoor air quality. *American journal of lifestyle medicine*, 11(4), 284-295.
16. Tariq, N., Jaffry, T., Fiaz, R., Rajput, A. M., & Khalid, S. (2018). Awareness about indoor air pollution in general population of Rawalpindi and Islamabad. *Pakistan Journal of Public Health*, 8(2), 80-83.