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( ABSTRACT

Yellow Stem Borer (YSB) (Scirpophaga incertulas) is one of the most destructive pests affecting rice production in India, causing
significant yield losses across different agro-climatic regions. Accurate forecasting of YSB populations is crucial for timely pest
management and minimizing crop damage. This study evaluates the performance of statistical and machine learning models for
predicting YSB populations using weekly pest incidence data collected from five research stations in Andhra Pradesh (Nellore,
Maruteru, Bapatla, Ragolu, and Nandyal) over multiple years. The study employs Integer-Valued Generalized Autoregressive
Conditional Heteroskedastic (INGARCH) models along with Artificial Neural Networks (ANN), Support Vector Regression (SVR),
Extreme Learning Machines (ELM), and their hybrid counterparts (INGARCH-ANN, INGARCH-SVR, and INGARCH-ELM) to improve
forecasting accuracy. Results indicate that hybrid models, particularly NBINGARCH-ELM, consistently outperformed standalone
models in terms of Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) across different locations and seasons. The
findings reveal that YSB populations are significantly influenced by climatic factors such as temperature, relative humidity, and
rainfall, with distinct seasonal patterns. The Box-Pierce test confirmed minimal autocorrelation in residuals for most models,
validating their reliability. These results highlight the potential of hybrid statistical machine learning models for pest forecasting,
providing valuable insights for integrated pest management (IPM) strategies. Future research can further enhance these models by
incorporating additional environmental and agronomic variables for improved precision in pest outbreak predictions.
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Introduction

Rice (Oryza sativa) is a staple crop that serves as the primary
food source for more than half of the world's population and
plays a crucial role in global food security. However, rice
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cultivation is severely affected by insect pests, among which the
Yellow Stem Borer (Scirpophaga incertulas Walker) (YSB) is one
of the most destructive pests, particularly in South and
Southeast Asia.
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In India, YSB is a major pest affecting rice production, leading to
significantyield losses across diverse agro-climaticregions.

YSB is a monophagous pest that feeds exclusively on rice plants,
attacking crops at all growth stages. The larvae bore into rice
stems, disrupting nutrient and water transport, leading to "dead
heart” symptoms in the vegetative stage and "white earhead"
symptoms in the reproductive stage. These damages
significantly reduce yield potential and grain quality. The life
cycle of the yellow stem borer consists of four stages: egg, larva,
pupa, and adult. The total duration of the life cycle (egg-adult)
can vary between 32 to 45 days depending on temperature [9].
Female moths lay eggs in masses of 100 to 200 eggs near the tip
of leaf blades. Eggs hatch in 6 to 8 days under warm conditions.
The larva is the damaging stage and undergoes six instars in 21
to 29 days. Pupation takes place inside the stem, usually in the
lowest node of the plant or just above the water level. The pupal
period lasts about 5 to 7.5 days depending on temperature. The
female moth is larger than the male with forewings that are
bright yellowish brown with a distinct black spot in the center.
Moths are active at night; a female can lay up to three egg masses
during her 6 to 10-day life span. YSB populations are strongly
influenced by climatic factors such as temperature, relative
humidity, rainfall, and sunshine hours, along with agronomic
practices like continuous rice cropping, absence of crop
rotation, and the presence of alternative hosts. Peak infestations
typically occur during the monsoon (July-September) and post-
monsoon (October-November) seasons, coinciding with high
humidity (above 80%) and temperatures ranging from 22°C to
30°C. Persistent infestations often occur in rice fields that
experience overlapping crop cycles, facilitating the
uninterrupted proliferation of YSB populations.

Despite its economic significance, the ability to predict YSB
outbreaks remains a challenge due to the highly variable and
nonlinear nature of its population dynamics. Conventional
statistical models such as multiple linear regression and
autoregressive integrated moving average (ARIMA) models
have been widely used for pest forecasting but are often
ineffective in capturing autocorrelated, over-dispersed, and
nonlinear patterns in insect population data. Count time series
models, such as the Integer-Valued Generalized Autoregressive
Conditional Heteroskedastic (INGARCH) model, offer a better
alternative for modeling YSB population dynamics as they
account for integer-valued autocorrelated count data, making
them more suitable for insect pest forecasting.

In recent years, machine learning (ML) techniques have gained
prominence in agricultural forecasting, demonstrating superior
performance in handling complex datasets with nonlinear
dependencies. Artificial Neural Networks (ANN), Support
Vector Regression (SVR), and Extreme Learning Machines
(ELM) have been successfully applied to various domains,
including crop yield prediction, disease forecasting, and pest
modeling. These ML models can efficiently capture intricate
relationships between YSB populations and climatological
parameters, offering more accurate forecasting capabilities.
Recognizing the limitations of standalone statistical and ML
models, this study proposes the integration of INGARCH with
ANN, SVR, and ELM i.e INGARCH-ANN, INGARCH-SVR, and
INGARCH-ELM to enhance forecasting accuracy by leveraging
the strengths of both approaches.

This research was conducted in Bapatla, Nandyal, Nellore, West
Godavari (Maruteru), and Srikakulam (Ragolu)districts of
Andhra Pradesh, where YSB infestations are frequently
observed.

Weekly cumulative YSB population data were collected using
solar light traps, while meteorological parameters, including
temperature, rainfall, relative humidity, and sunshine hours,
were recorded from automatic weather stations in and around
the study locations. The study evaluates the predictive
performance of INGARCH, ANN, SVR, and ELM models and their
hybrid versions; INGARCH-ANN, INGARCH-SVR, and INGARCH-
ELM using Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE) as comparative measures.

By integrating statistical and machine learning-based
approaches, this study aims to improve the accuracy of YSB
population predictions and provide timely pest management
recommendations. The findings will help farmers in Andhra
Pradesh adopt effective pest control strategies, reduce crop
losses, and ensure sustainable rice production.

2.Materialsand Methods

2.1.Data Collection

Secondary data on light trap catches of major pests in rice was
collected from the Nellore, Maruteru, Bapatla, Ragolu, and
Nandyal agricultural research stations run under Acharya NG
Ranga Agricultural University, Andhra Pradesh. The dataset
provides weekly observations from different research stations
in Andhra Pradesh, covering multiple years for both the Kharif
and Rabi seasons. At Nellore (NLR), data is available from 2009
to 2023, with 285 observations in Kharif (SMW 27-45) and 255
observations in Rabi (SMW 46-10). Ragolu (RGL) has data from
2011 to 2023, with 286 observations in both Kharif (SMW
26-47) and Rabi (SMW 48-17). Maruteru (MTU) has the longest
record, with Kharif data from 2002 to 2023 (616 observations,
SMW 25-52) and Rabi data from 2003 to 2023 (420
observations, SMW 1-20). Bapatla (BPT) has Kharif data from
2011 to 2023 (364 observations, SMW 32-7), while Nandyal
(NDL) has Kharif data from 2014 to 2022 (225 observations,
SMW 33-5). The Standard Meteorological Weeks (SMW)
indicate the time frames within each season when data was
collected. Ten-week observations were used as
testing/validation sets, and the remaining observations were
used as the training data set.

2.2.Statistical Models

Statistical modeling started with descriptive statistical
parameters encompassing mean, standard error (SE),
skewness, kurtosis, minimum observation, maximum
observation, and coefficient of variations (CV), which are
importantin depicting the nature of the studied data. Apart from
the descriptive statistics, data were depicted graphically with
time series plots. Pearson's product-moment correlation
analysis was carried out to determine the interrelationship
among the variables used in the study. Various time series
models, machine learning models, and hybrid models were
considered as mentioned below.

2.2.1. Integer-Valued Generalized Autoregressive
Conditional Heteroscedastic (INGARCH) Model

The time series following the generalized linear model (GLM)
framework was elaborated by [7]. INGARCH models are a class
of GLM mentioned in [6] and [2], in which the conditional
distribution of the dependent variable is assumed to follow
popular discrete distributions like Poisson, negative binomial,
generalized Poisson, and double Poisson distributions [17].
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Let the count time series be Yt: t € Nand the time-varying
r-dimensional covariate vector be Xt:t € N i.e,,

Xt = (Xt, 1, ..., Xt,7)T.The conditional mean becomes
E(Yt | Ft —1)and Ftis historical data. The generalized
model form is expressed as follows:

gAe) = Bo + Xy g(yt—ik) +3L, ,Blg(/-{t—jl) +7" .. (1)

Case 1: Consider the situation where g and g are
equal to identity, i.e., g(x)=, g(x) = x

Further, Y, follows (Poisson) INGARCH(p, q)
model withp > landq = 0if

(a) Y; conditioned onY;_;,Y;_,,...,is Poisson distributed
(b) The conditional mean A; = E[Y; | Y;_;, Y;_,, ... | satisfies

P a
o= Pyt Y@t + Yy heg Twhere(fy > 0)
=

=1

and(ay, ..., p, By, ..., Bg = 0) ... (2)

Assuming further that Y;|Y;_; is Poisson distributed,

then we obtain an INGARCH model of order p and q,
abbreviated as INGARCH (p, g)model. If ¢ = 0,

the model can be referred to as the INAGARCH (p) model.
These models are also known as autoregressive conditional

Poisson (ACP) models.

Case 2:

The negative binomial distribution allows for a conditional
variance to be larger than the mean A, which is often referred
to as over-dispersion (with over-dispersion parameter @)
mentioned in [1]. It is assumed that

Y. | Fi_; ~ NegBinom(A;, @). when @ — oo,

the Poisson distribution is a limiting case of

the negative binomial distribution by the assumption:

. B+aYi_
Y, | Yi_y,Yi_y, .. ~ Bin (n%) -~ (3)

Additional details into the estimation of INGARCH models using
conditional likelihood methods, particularly regarding their
asymptotic properties, can be found in the works of [6] and [3].
The standard INGARCH model is designed to generate forecasts
relying solely on past observations of the forecast variable. It
operates under the assumption that future outcomes are
influenced by both their own lagged values and, when
applicable, by the lagged values of explanatory variables. An
enhanced version, known as the INGARCHX model,
incorporates exogenous variables explicitly into the framework,
providing a more flexible structure for modeling time series
data with external influences [8].

2.2.2. Artificial Neural Network (ANN)

ANN is the most widely used machine learning technique in the
last several decades. In the area of time series modeling, the
ANN is commonly referred to as the autoregressive neural
network as it considers time lags as inputs. The time series
framework for ANN can be mathematically modeled using a
neural network with the implicit functional representation of
time. The general expression for the final output Y. of a multi-
layer feed-forward autoregressive neural network is expressed
as follows:

Yo = ao + X] 419 (Boj + Z-1 ByYep) + € . (4)
where,a;(j = 0,1,2,...,q) and B;;(i = 0,1,2,...,p,j = 0,1,2,...,9)

are the model parameters, also called the synopsis weights, p is
the number of input nodes, g is the number of hidden nodes, and
g is the activation function. The training part in ANN minimizes
the error function between actual and predicted values. The
error function of autoregressive ANN is expressed as follows:

1 N 1 N Q P
E =Nz(et)2 =NZ Xe—| wo +ZW19 (Wo]' +ZWinz—i)
t=1 t=1 = i=1

Where N is the total number of error terms.

The parameters of the neural network w;; are changed

by a number of changes in Aw;; as Aw;; = —n %
ij

where 7 is the learning

rate [11], [16]. As in INGARCHX and SVRX models,

the exogenous variable will also be used

To model the pest count, and hence becomes ANNX model.

2.2.3. Support Vector Regression (SVR)

The principal idea involved in SVR is to transform the original
input space into high-dimensional variable space and then
build the regression or time series model in a transformed
high-dimensional feature space. A vector of data set says

Z = {x; y;})_,, where x; € R™ is the input vector, y; is the scalar
output, and N is the size of data set. The general equation SVR
can be written as follows:

f)=WTf(x)+b..(5)

where, W is the weight vector, b is bias term, and superscript
T denotes the transpose. The coefficients W and b are
estimated from data by minimizing the following regularized
risk function:

R(q) =5 1WIP + € (320 Le (v, f (x))) - (6)

This regularized risk function minimizes both the empirical error
and regularized term simultaneously, which helps in avoiding both
under and overfitting of the model. In the above Equation, the

first term % ||w]|? is called the ‘regularized term’, which measures
the flatness of the function. Minimizing% [|w]||? will make a

function as flat as possible. The second term %Z?’:l Lg(yi,f(xl-))

is called the ‘empirical error’, which was estimated by Vapnik
¢ —insensitive loss function as follows:

e s T

where, y; is actual value and f(x;)is an estimate value.
The most commonly used kernel function is the radial
basis function (RBF) which is given as follows:

k(x;, %) = exp{—y||x — x;]|*} ... (7)

The effectiveness of the Radial Basis Function (RBF) kernel relies
on the proper tuning of two key hyperparameters: the
regularization parameter C, which controls the trade-off
between model complexity and prediction accuracy, and another
parameter related to the kernel width and the Kernel bandwidth
parameter, which represents the variance of the RBF kernel
function, g. In SVR and ANN also, the exogenous variables are
used for both modeling and forecasting purposes as in
INGARCHX model.
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2.2.4. Extreme Learning Machine (ELM)

A single layer feed forward network with x;, x5, ..., x,,
input nodes, hy, hy, ..., h,, hidden nodes and t; be the target
node is shown in Fig.1 that was indicated by [14].

Output Modes

Hidden Modes

Figure 1: Single layer feed forward network

Let (a;, b;) be the weights connecting from input layer

to hidden layer and B, 5, ..., fnbe the weights of the

nodes connecting from hidden layer to the output layer. Let “g”
be the piecewise continuous activation function.

The hidden layer outputs are given as

N
Z[Big(ai' bi'xj)] =t, j=1..,N
i=1

This equation can be rewrittenas fSH = T.Here H is
called the hidden layer output matrix, which can be
expressed as follows,

G(ay, by, x,) G(azvrbzv,x1))

H(ay, ...,ay; by, o, by; X, o, xy) = ( :
G(ay, by, xy)

G(alr bll xM)

B =[B1Bz...Bnl" and T = [t1t5... t,]"

2.2.5. INGARCH-ANN Hybrid Model

The hybrid model combines INGARCH and ANN, where
INGARCH captures linear temporal dependencies while
ANN captures nonlinear relationships.

Hybrid Model Formula:
Y, = y1de + 1Y + e .. (8)

Where, A, is the INGARCH-predicted mean, YAMV is

the ANN-predicted value, y; andy, are weighting parameters,
€, is the error term.

This model leverages the strengths of both INGARCH and ANN
to improve predictive performance for count time series data

2.2.6. INGARCH-SVR Hybrid Model

The INGARCH-SVR hybrid model combines INGARCH for
linear dependencies and SVR for capturing complex nonlinear
patterns.

Hybrid Model Formula:
Y, = yide + 1Y R + € (9)
Where, A, is the prediction from the INGARCH model, Y;5"® is
the prediction from the SVR model, y; andy, are weight coefficients,
€, is the error term.

2.2.7. INGARCH-ELM Hybrid Model

The hybrid model combines INGARCH to capture linear
temporal dependencies and ELM to learn complex nonlinear
patterns.

Hybrid Model Formula:
Y, = y1de + Y + €, ... (10)
Where, 4,is the prediction from the INGARCH model, Y™
is the prediction from the ELM model, y; andy,are weighting
parameters, €, is the error term.

2.3. Comparison Criteria

Mean Square Error (MSE) and Root Mean Square Error (RMSE)
were used as comparison criteria for the model performance.
The Mean Square Error (MSE) is the average of the sum of
squared error values and given as:

T =72

MSE = .. (11)
RMSE is also known as standard error of estimate in regression
analysis, and is given as:

N ._7)2
RMSE = BT (1)

where,Y; is the actual value, Y, is the predicted value,
and N is the number of observations.

2.4 Test for Autocorrelation and Nonlinearity

2.4.1 Box-Pierce Test for Autocorrelation

The Box-Pierce test is a diagnostic tool used to examine whether
the residuals from a time series model are independently
distributed. It specifically tests the null hypothesis that there is
no autocorrelation (i.e., the residuals are white noise) up to a
specified number of lags.

The Box-Pierce test statistic is defined as

22 =nTp, 7 .(13)

Where:
e x2is the Box-Pierce statistic
e nisthe sample size (number of residuals)
e misthe number of lags up to which autocorrelation is tested
e 7 Isthe sample autocorrelation at lag k

The Box-Pierce test essentially accumulates the squared sample
autocorrelations up to lag m, scaled by the sample size n, to
detectany significantautocorrelation in the residuals.

2.4.2 BDS (Brock-Dechert-Scheinman) test for non-linearity
The BDS test is a non-parametric test of the null hypothesis that
the data is independently and identically distributed (iid)
against an unspecified alternative. The test enables one to test
for nonlinear dependence because it is not affected by linear
dependenciesin the data.

2.4 Software used

The time series plots, INGARCH, ANN, ELM, SVR, INGARCH-ANN,
INGARCH-SVR, and INGARCH-ELM models along with the
Correlation analysis were carried outin R software.
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3.Results and Discussion

3.1 Summary statistics

The summary statistics of Yellow Stem Borer (YSB) count data
across five locations: Nellore, Maruteru, Bapatla, Ragolu, and
Nandyal during Kharif and Rabi seasons reveal significant
spatial and temporal variability in pest populations. The mean
YSB count was highest in Maruteru (Kharif: 532.17, Rabi:
1216.63), indicating that this location experiences the most
severe infestations, particularly in the Rabi season. In contrast,
Bapatla kharif (56.78), Nellore kharif(176), and Ragolu Rabi
(25.60) recorded moderate to low mean populations, while
Nandyal (kharif 6.76) exhibited the least infestation levels. The
median YSB counts across all locations were substantially lower
than the mean, signifying a highly skewed distribution where
most observations had low YSB counts, but occasional
outbreaks caused extreme values. This is further emphasized by
the mode (0) for all locations, indicating that YSB was often
absent for many weeks, reinforcing the erratic nature of
infestations. The standard deviation (SD) and coefficient of
variation (CV%) suggest a high degree of fluctuation in YSB

Table 1: Descriptive statistics of the YSBdata in all the five locations in kharif and rabi

populations across locations. Maruteru (Rabi) exhibited the
highest variability (SD: 2376.84, CV%: 195.36), followed by
Bapatla (Kharif: SD: 123.55, CV%: 217.59), implying that YSB
infestations in these regions are unpredictable and subject to
extreme spikes. The high CV% (>100%) across all locations
indicates substantial population fluctuations, making
forecasting challenging. The data also exhibited strong positive
skewness, with values exceeding 6.9 in Bapatla and Maruteru,
confirming that YSB populations are dominated by periods of
low counts with occasional outbreaks of exceptionally high
numbers. Furthermore, kurtosis values were extremely high,
particularly in Maruteru (Kharif: 76.65) and Bapatla (Kharif:
65.04), signifying a highly peaked distribution with rare but
severe infestations. The minimum values (0) across all locations
highlight that YSB populations were absent for several weeks,
while the quartile values (Q1 and Q3) demonstrate that 25% of
observations recorded low counts, with the upper quartile (Q3)
and maximum values revealing extreme outbreaks. The highest
recorded infestation (20,648 in Maruteru Rabi) underscores the
severity of these outbreaks and the need for an effective early
warning system.

Summary Statistics of YSB count data

Location Nellore Maruteru Bapatla Ragolu Nandyal
Season Kharif Rabi Kharif Rabi Kharif Kharif Rabi Kharif
Mean 176 48.60 532.17 1216.63 56.78 11.16 25.60 6.76
Median 67 35 149.5 301 22.5 7 15.5 5
Mode 0 0 0 0 0 0 0 0
SD 303.55 53.48 1220.69 2376.84 123.55 13.53 26.22 7.05
Skewness 3.80 2.74 6.95 4.04 6.91 2.09 1.12 1.80
Kurtosis 22.89 16.67 76.65 24.75 65.04 8.72 3.56 6.83
Minimum 0 0 0 0 0 0 0 0
15TQ 22 10 38 91.75 8 1 4.25 2
3rdQ 175 70 475 1174 66.75 15.75 39 9
Maximum 2635 455 17428 20648 1486 80 132 39
CV% 172.47 110.03 229.37 195.36 217.59 121.24 102.44 104.32
Table 2. Pearson correlation coefficients between YSB populations and climatological variables
LOCATION SEASON YSB TMAX TMIN RF RHM RHE
-0.113*
TMAX (p=0.0306)
TMIN -0.184** -0.139**
(p=0.0004) (p=0.0080)
RF -0.164** 0.072Ns 0.307**
BAPATLA KHARIF (p=0.0017) (p=0.1723) (p=0.0000)
RHM 0.126* -0.311** -0.134* 0.076Ns
(p=0.0162) (p=0.0000) (p=0.0104) (p=0.1489) -
RHE -0.048Ns 0.005Ns 0.267** 0.307** -0.067Ns
(p=0.3653) (p=0.9216) (p=0.0000) (p=0.0000) - (p=0.1989) -
SSH 0.250%* -0.038Ns -0.205%* -0.073Ns -0.031Ns -0.088Ns
(p=0.0000) (p=0.4733) (p=0.0001) (p=0.1618) - (p=0.5498) - (p=0.0932)
-0.289**
TMAX (p=0.0000)
TMIN -0.197** 0.410**
(p=0.0029) (p=0.0000)
RF -0.078Ns -0.123Ns 0.317**
(p=0.2440) (p=0.0656) (p=0.0000)
NANDYAL KHARIF
RHM 0.114Ns -0.445** -0.177** 0.157*
(p=0.0867) (p=0.0000) (p=0.0076) (p=0.0181) -
RHE 0.096Ns -0.326** 0.528** 0.364** 0.311
(p=0.1531) (p=0.0000) (p=0.0000) (p=0.0000) - (p=0.0000) -
SSH 0.039Ns 0.263 -0.275 -0.381** -0.204** -0.322 %
(p=0.5564) (p=0.0001) (p=0.0000) (p=0.0000) - (p=0.0021) - (p=0.0000)
65. © 2026 AATCC Review. All Rights Reserved.



P. Lavanya Kumari et al, / AATCC Review (2026)

-0.045Ns
TMAX (p=0.4508)
0.034Ns 0.601**
TMIN (p=0.5622) (p=0.0000)
RE -0.096 Ns -0.147* 0.086Ns
KHARIF (p=0.1043) (p=0.0133) (p=0.1477)
RHM 0.083Ns -0.501%* -0.423%* -0.321%*
(p=0.1600) (p=0.0000) (p=0.0000) (p=0.0000)
RHE -0.029Ns -0.564** -0.258** 0.560%* 0.252%*
(p=0.6283) (p=0.0000) (p=0.0000) (p=0.0000) (p=0.0000)
SsH 0.019Ns 0.340%* 0.043Ns -0.077Ns -0.173%* -0.218%*
NELLORE (p=0.7459) (p=0.0000) (p=0.4707) (p=0.1976) (p=0.0034) (p=0.0002)
TMAX 0.179*
(p=0.0042)
0.052Ns 0.231%*
TMIN (p=0.4051) (p=0.0002)
RE 0.112Ns -0.162 0.005Ns
RABI (p=0.0740) (p=0.0094) (p=0.9373)
RHM 0.098Ns -0.220%* -0.222%* 0.140
(p=0.1177) (p=0.0004) (p=0.0003) *(p=0.0252)
RHE -0.064Ns -0.381 -0.440 0.411 0.436
(p=0.3117) (p=0.0000) (p=0.0000) (p=0.0000) (p=0.0000)
ssH 0.081Ns 0.074 Ns -0.186** -0.353** 0.131* -0.262%*
(p=0.1958) (p=0.2388) (p=0.0028) (p=0.0000) (p=0.0372) (p=0.0000)
-0.028Ns
T™MAX (p=0.4943)
TMIN -0.236** 0.527%*
(p=0.0000) (p=0.0000)
RE -0.147%* -0.124** 0.143**
(p=0.0002) (p=0.0021) (p=0.0004)
KHARIF RHM -0.020Ns -0.334%* -0.196%* 0.203**
(p=0.6145) (p=0.0000) (p=0.0000) (p=0.0000)
RHE -0.225%* -0.370%* 0.150%* 0.233** 0.401%*
(p=0.0000) (p=0.0000) (p=0.0002) (p=0.0000) (p=0.0000
SsH 0.190 ** 0.212%* -0.242%* -0.342%* -0.147%* -0.357**
MARUTERU (p=0.000) (p=0.0000) (p=0.0000) (p=0.0000) (p=0.0003 (p=0.0000)
0.331%*
T™MAX (p=0.0000)
0.343** 0.811%*
TMIN (p=0.0000) (p=0.0000)
RE 0.060Ns 0.111* 0.162%*
RABI (p=0.2161) (p=0.0235) (p=0.0009)
RHM -0.180%* -0.138** -0.215%* -0.026Ns
(p=0.0002) (p=0.0048) (p=0.0000) (p=0.5892) -
RHE -0.339%* -0.358%* -0.156** 0.046Ns 0.152%*
(p=0.0000) (p=0.0000) (p=0.0013) (p=0.3513) - (p=0.0018
SsH 0.147%* 0.261%* 0.131%* -0.147%* 0.021* -0.130**
(p=0.0025) (p=0.0000) (p=0.0071) (p=0.0026 (p=0.6671) (p=0.0075)
TMAX -0.138*
(p=0.0195)
-0.276** 0.140*
TMIN (p=0.0000) (p=0.0181)
RE -0.091Ns -0.337%* 0.018Ns
(p=0.1256) (p=0.0000) (p=0.7599)
KHARIF RHM -0.128* 0.069Ns -0.010Ns -0.080Ns
(p=0.0303) (p=0.2454) (p=0.8659) (p=0.1771)
RHE -0.120% -0.173** 0.180%* 0.355%* -0.120 *
(p=0.0428) (p=0.0034) (p=0.0023) (p=0.0000) (p=0.0434)
SSH 0.178 ** 0.122* -0.153** -0.138* -0.134* -0.219%*
RAGOLU (p=0.0025) (p=0.0394) (p=0.0094) (p=0.0193) (p=0.0233) (p=0.0002)
TMAX -0.093Ns
(p=0.1164
TMIN -0.159%* 0.911%*
(p=0.0072) (p=0.0000)
RF -0.000Ns 0.151 0.026Ns
RABI (p=0.9995) (p=0.0107) (p=0.6625)
RHM -0.110Ns 0.836** 0.917%* -0.008Ns
(p=0.0620 (p=0.0000) (p=0.0000) (p=0.8893)
RHE -0.100 Ns 0.892%* 0.952%* 0.172%* 0.915%*
(p=0.0929) (p=0.0000) (p=0.0000) (p=0.0035) (p=0.0000)
SsH -0.056Ns -0.040Ns 0.055Ns -0.334** 0.072 Ns -0.018Ns
(p=0.3447) (p=0.4957) (p=0.3542) (p=0.0000) (p=0.2271) (p=0.7638)

*Significant at 5% level, **significant at 1% level, NS-Not significant
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The below figure 2 shows the year-wise time series plots of the YSB population in five locations during two seasons i.e kharif and rabi
except for Bapatlaand Nandyal as the pest counts were recorded only for kharif season.
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Figure 2. Time series plots of YSB Population in five locations
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3.2 Correlation Analysis

In Bapatla (BPT) during Kharif, YSB incidence showed a
significant negative correlation with TMAX (r = -0.113, p =
0.0306), TMIN (r =-0.184, p = 0.0004), and RF (r =-0.164, p =
0.0017), indicating that higher temperatures and rainfall tend to
reduce YSB infestation, while RHM had a significant positive
correlation (r = 0.126, p = 0.0162), suggesting that increased
morning humidity favors pest development. TMIN had a
significant negative correlation with TMAX (r = -0.139, p =
0.0080), while RF was positively correlated with TMIN (r =
0.307,p=0.0000). RHE showed significant positive correlations
with TMIN (r=0.267,p =0.0000) and RF (r=0.307,p=0.0000),
while SSH had a significant positive correlation with YSB (r =
0.250, p = 0.0000) and a negative correlation with TMIN (r = -
0.205, p = 0.0001). However, SSH was not significantly
correlated with TMAX, RHE, RF, RHM (p > 0.05), and RHE was
not significantly correlated with YSB, TMAX, or RHM suggesting
limited influence of evening humidity and sunshine hours on
these weather parameters. In Nandyal (NDYL) YSB incidence in
Kharif was significantly negatively correlated with TMAX (r = -
0.289,p<0.0001) and TMIN (r=-0.197, p = 0.0029), reinforcing
the trend that higher temperatures suppress pest activity.
However, TMIN had a strong positive correlation with RHE (r =
0.528, p < 0.0001), suggesting that warmer nights combined
with high humidity might create favorable conditions for YSB
survival. Rainfall did not exhibit a significant correlation (p >
0.05). In Nellore (NLR) during Kharif, TMAX did not show a
significant correlation with YSB infestation (p = 0.4508), while
TMIN displayed a strong positive correlation (r = 0.601, p <
0.0001) with TMAX, suggesting that warmer nights promote
infestation. Rainfall showed inconsistent effects, with one
significant negative correlation (r = -0.147, p = 0.0133) with
TMAX. RHM and RHE are not significantly correlated with YSB
incidence. In Rabi, TMAX was positively correlated (r=0.179,p =
0.0042), suggesting that higher temperatures might favor
infestation during the dry season. In Maruteru (MTU) during
Kharif, TMAX did not significantly influence YSB (p = 0.4943),
but TMIN showed a negative correlation (r=-0.236,p <0.0001),
suggesting that cooler nights reduce infestation. Rainfall
displayed mixed effects, with both positive and negative
correlations, depending on interaction with other climatic
variables. Notably, RHE exhibited a significant negative
correlation with YSB (r = -0.225, p < 0.0001), indicating that
lower evening humidity may favor infestation. In Rabi, TMAX,

TMIN, and SSH were positively correlated with YSB, suggesting
that higher temperatures along with sunshine hours contribute
to increased pest incidence in the dry season. RHM and RHE
showed a negative significant correlation with YSB incidence. In
Ragolu (RGL) the YSB incidence during Kharif was negatively
correlated with TMAX (r =-0.138, p = 0.0195) and TMIN (r = -
0.276, p < 0.0001), similar to other locations. RHM and RHE
showed negatively significant correlations with YSB incidence.
SSH shows a positive correlation with YSB. Rainfall did not
significantly affect infestation (p > 0.05), while RHE and SSH
exhibited a combination of significant positive and negative
correlations, with other weather parameters suggesting an
intricate influence of microclimatic factors on pest dynamics. In
Rabi, TMIN had a negative correlation (r=-0.159,p = 0.0072)
with YSB incidence. TMIN had a strong positive correlation (r =
0.911, p < 0.0001) with TMAX, reinforcing the hypothesis that
higher nighttime temperatures favor infestation.

The results indicate that temperature, humidity, and rainfall
play crucial roles in determining YSB incidence, with distinct
seasonal and locational variations. Higher maximum (TMAX)
and minimum (TMIN) temperatures are generally associated
with reduced infestation during Kharif but contribute to
increased infestation in Rabi. Relative humidity, both in the
morning (RHM) and evening (RHE) exhibits complex
interactions, with morning humidity often showing a positive
correlation with YSB incidence. Rainfall has an inconsistent
effect, with significant positive correlations in some locations
while being negative or nonsignificant in others. Additionally,
sunshine hours (SSH) display significant negative correlations
with YSB in multiple locations, suggesting that increased solar
radiation may suppress infestation levels. These findings
highlight the intricate relationships between climatic factors
and YSB dynamics, emphasizing the need for location-specific
pestmanagementstrategies.

3.3INGARCHX model using Negative Binomial distribution
The INGARCHX model is like a multivariate regression model
but allows one to take advantage of autocorrelation that may be
presentin residuals of the regression to improve the accuracy of
a forecast. INGARCHX based on Negative Binomial distribution
is performed for all major pests in both the seasons in five
locations of Andhra Pradesh and results are summarized in
table.3.

Table 3. Parameter estimation of the INGARCHX model for YSB populations at study locations

Location Season Parameter Estimate S.E.
(Intercept) 2.55E+01 5.55E+01
beta_2 1.03E-01 9.35E-02
alpha_2 3.95E-01 4.49E-01
TMAX 4.51E-02 9.67E-01
TMIN 1.83E-13 9.24E-01
BAPATLA KHARIF
RF 6.11E-08 9.77E-02
RHM 4.92E-07 4.25E-01
RHE 2.51E-04 4.00E-01
SSH 2.22E-02 1.85E+00
sigmasq 2.47E+00
(Intercept) 3.02E+00 8.58E+00
beta_1 2.06E-01 1.02E-01
alpha_1 2.00E-01 3.88E-01
TMAX 1.42E-12 2.69E-01
TMIN 3.78E-07 1.85E-01
NANDYAL KHARIF
RF 9.55E-05 1.02E-02
RHM 4.54E-08 6.30E-02
RHE 1.10E-08 4.74E-02
SSH 5.55E-02 1.68E-01
sigmasq 5.55E-01

Z-value P-value Box pierce test of residuals
0.4592 0.6461
1.1065 0.2685
0.8801 0.3788
0.0466 0.9628
0 1 .
0 1 Chi-squared = 180.33, df = 1, p-value < 2.2e-16
0 1
0.0006 0.9995
0.012 0.9904
0.3516 0.72515
2.0219 0.04318
0.5157 0.60606
0 1
0 1 .
Chi-squared = 104.12, df = 1, p-value < 2.2e-16
0.0094 0.99251
0 1
0 1
0.3295 0.74181
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(Intercept) 8.22E+00 8.71E+01 0.0944 0.9248
beta_1 8.27E-01 1.87E-01 4416 1.01E-05
alpha_1 9.84E-03 1.08E-01 0.0911 0.9274
TMAX 9.64E-03 2.88E+00 0.0033 0.9973
TMIN 5.36E-03 3.52E+00 0.0015 0.9988
KHARIF RF 5.20E-10 7.64E-02 0 1 Chi-squared = 8.132, df = 1, p-value = 0.004349
RHM 1.22E-01 3.11E-01 0.3917 0.6953
RHE 2.39E-05 4.69E-01 0.0001 1
SSH 1.27E+00 2.24E+00 0.5693 0.5692
sigmasq 1.33E+00
(Intercept) 3.85E-05 7.85E+01 0 1
NELLORE beta_4 3.33E-01 1.12E-01 2.9713 0.002965
alpha_4 5.53E-02 1.68E-01 0.3289 0.742237
TMAX 5.23E-01 1.90E+00 0.2758 0.782732
RABI TMIN 2.1BE-05 3.76E-01 0.0001 0999954 Chi-squared = 94.251, df = 1, p-value < 2.2e-16
RF 1.34E-01 1.05E-01 1.2758 0.202025
RHM 2.81E-08 5.72E-01 0 1
RHE 1.55E-06 5.10E-01 0 0.999998
SSH 2.11E+00 1.20E+00 1.7645 0.077649
sigmasq 1.11E+00
(Intercept) 4.04E+02 1.31E+03 0.3084 0.7578
beta_4 5.84E-02 7.16E-02 0.8154 0.4148
alpha_4 1.26E-01 7.59E-01 0.1664 0.8679
TMAX 2.88E-08 2.94E+01 0 1
TMIN 9.46E-08 2.24E+01 0 1 .
KHARIF Chi-squared = 163.84, df = 1, p-value < 2.2e-16
RF 4.46E-08 1.00E+00 0 1
RHM 9.97E-09 1.15E+01 0 1
RHE 1.65E-07 5.98E+00 0 1
SSH 8.84E+00 2.70E+01 0.328 0.7429
sigmasq 4.55E+00
MARUTERU
(Intercept) 7.07E+02 1.97E+03 0.3587 0.7198214
beta_2 4.55E-01 1.38E-01 3.2974 0.0009758
alpha_2 2.03E-07 1.30E-01 0 0.9999987
TMAX 4.67E-05 5.34E+01 0 0.9999993
TMIN 8.00E-01 4.63E+01 0.0173 0.9862125 .
RABI Chi-squared = 131.35, df = 1, p-value < 2.2e-16
RF 2.17E+01 1.41E+01 1.5344 0.1249388
RHM 4.35E-09 1.65E+01 0 1
RHE 3.96E-08 7.16E+00 0 1
SSH 2.61E+00 6.51E+01 0.04 0.9680833
sigmasq 1.97E+00
(Intercept) 1.09E+01 5.49E+03 0.002 0.9984
beta_3 8.29E-05 6.68E-02 0.0012 0.999
alpha_3 7.45E-05 5.02E+02 0 1
TMAX 9.34E-08 4.63E-01 0 1
TMIN 6.12E-13 2.19E-01 0 1 .
KHARIF Chi-squared = 110.49, df = 1, p-value < 2.2e-16
RF 5.12E-07 1.85E-02 0 1
RHM 1.82E-08 2.94E-02 0 1
RHE 3.15E-07 7.34E-02 0 1
SSH 3.99E-04 3.00E-01 0.0013 0.9989
sigmasq 1.52E+00
RAGOLU
(Intercept) 2.44E+01 5.56E+04 4.00E-04 0.9996
beta_1 3.96E-05 9.00E-02 4.00E-04 0.9996
alpha_1 8.61E-06 2.27E+03 0.00E+00 1
TMAX 3.19E-06 1.22E-01 0.00E+00 1
TMIN 1.72E-11 3.25E-01 0.00E+00 1 .
RABI Chi-squared = 147.51, df = 1, p-value < 2.2e-16
RF 1.57E-05 1.46E-01 1.00E-04 0.9999
RHM 1.43E-11 5.43E-02 0.00E+00 1
RHE 6.25E-14 1.33E-01 0.00E+00 1
SSH 1.28E-07 1.22E+00 0.00E+00 1
sigmas 1.10E+00

The INGARCHX model was fitted to analyze the time series data incorporating exogenous climatological variables. The estimated
model parameters were found to be significantat various locations and seasons, with 8 coefficients indicating a strong dependence of
current values on past observations. However, none of the climatological variables (TMAX, TMIN, RE, RHM, RHE, SSH) were
consistently significant across all hot-spot locations, suggesting their minimal contribution to the variation in the dependent
variable. The over-dispersion parameters varied across locations and seasons, confirming the heterogeneous and over-dispersed
nature of the data, following a Poisson or negative binomial distribution. The estimated dispersion values were 2.47 (Bapatla-
Kharif), 0.55 (Nandyal-Kharif), 1.33 (Nellore-Kharif), 1.11 (Nellore-Rabi), 4.55 (Maruteru-Kharif), 1.97 (Maruteru-Rabi), 1.52
(Ragolu-Kharif), and 1.10 (Ragolu-Rabi) (Table 3). Diagnostic checking of residuals using the Box-Pierce test revealed that residuals
were significantly autocorrelated (p < 2.2 x 107*¢) at most locations, indicating that the model did not fully account for all
dependence structures.
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Notably, for Kharif at Nellore, the residuals showed relatively lower autocorrelation (p = 0.0043), suggesting a comparatively better
model fit in that season at this location. However, in Rabi at Nellore (p < 2.2 x 107*¢), Kharifand Rabi at Maruteru (p < 2.2 x 107*¢),and
Kharif and Rabi at Ragolu (p < 2.2 x 107'%), the residuals exhibited significant autocorrelation, indicating potential model
refinements are necessary (Table 3). Overall, while the INGARCHX model successfully captured over-dispersion and temporal
dependence in the data, further improvements may be required to eliminate residual autocorrelation, possibly through additional
covariates, interaction terms, or model adjustments.

3.4 Machine Learning models and Two-stage modeling (Hybrid models)

In this study, in addition to INGARCH, Artificial neural network (ANN), Support vector regression (SVR), and Extreme learning
machine (ELM) models and the two-stage models like INGARCH-ANN, INGARCH-SVR and INGARCH-ELM were developed to forecast
pest populations. The two-stage methodology combines both significant original count time series linear and nonlinear significant
residual components to provide an aggregate forecast. As explained in the methodology section, the first step was to test the
autocorrelation in the residuals by the Box-Pierce test along with conformation of non-linearity by the BDS test. The Box-Pierce tests
revealed that residuals obtained by INGRACH models are autocorrelated and are nonlinear also as confirmed by the BDS test. As the
residuals were nonlinear, they were predicted using nonlinear and machine-learning models like ANN, SVR, and ELM. The ANN, SVR,
and ELM were used for forecasting INGARCH residuals in this study separately. The residuals predicted these models were combined
with the predicted values obtained from INGARCH models separately and the residual analysis of the all models was summarized in
table.4.

Table 4. Comparison criteria for different models for YSB populations in training and testing data sets

Train Test

Location Season Models MSE RMSE MSE RMSE Box pierce test for residuals
INGARCH 13616.55 116.69 521.92 22.85 p-value =2.2e-16
ANN 967.2 31.1 2218.23 471 p-value = 0.1568
SVR 1.54 1.24 15427.08 124.21 p-value = 0.3441
BAPATLA KHARIF ELM 14281.97 119.51 3297.55 57.42 p-value = 2.2e-16
INGARCH-ANN 1105.02 33.24 396.94 19.92 p-value = 0.07092
INGARCH-SVR 1.13 1.06 0.51 0.71 p-value = 1.012e-10
INGARCH ELM 0.06 0.24 0.01 0.1 p-value = 5.889e-09
INGARCH 34.11 5.84 14.52 3.81 p-value = 2.2e-16
ANN 3.46 1.86 155.71 12.48 p-value = 0.7647
SVR 6.23 2.5 47.98 6.93 p-value = 6.151e-14
NANDYAL KHARIF ELM 43.07 6.56 15.58 3.95 p-value =2.2e-16
INGARCH-ANN 8.62 2.94 17.15 4.14 p-value = 0.2263
INGARCH-SVR 0 0.05 0 0.04 p-value = 0.02407
INGARCH ELM 1] 0.01 0 0.01 p-value = 0.2315
INGARCH 1468591 1211.86 41123.54 202.79 p-value = 2.2e-16
ANN 336206.8 579.83 301257.4 548.87 p-value = 0.7341
SVR 163.42 12.78 1412822 1188.62 p-value = 0.08894
KHARIF ELM 1354884 1164 442851.8 665.47 p-value = 2.2e-16
INGARCH-ANN 221917.5 471.08 324462.1 569.62 p-value = 0.7335
INGARCH-SVR 6628.13 81.41 33.4 5.78 p-value = 0.7871
MARUTERU INGARCH ELM 306461.7 553.59 3050.86 55.23 p-value = 0.002149
INGARCH 4274548 2067.5 535736.4 731.94 p-value = 2.2e-16
ANN 536039.7 732.15 8690250 2947.92 p-value = 2.685e-06
SVR 3249.9 57.01 93169405 9652.43 p-value = 0.9665
RABI ELM 4053621 2013.36 4044693 2011.14 p-value = 2.2e-16
INGARCH-ANN 405145.9 636.51 1744343 1320.74 p-value = 0.4223
INGARCH-SVR 335.39 18.31 80.08 8.95 p-value = 0.05765
INGARCH ELM 727278.1 852.81 2029.85 45.05 p-value =2.2e-16
INGARCH 48530.82 220.3 494889.6 703.48 p-value = 0.004349
ANN 3162.55 56.24 303051 550.5 p-value = 0.9506
SVR 458.38 2141 495224.4 703.72 p-value = 5.551e-16
KHARIF ELM 74915.07 273.71 446256.2 668.02 p-value =2.2e-16
INGARCH-ANN 10287.82 101.43 491463.3 701.04 p-value = 0.5367
INGARCH-SVR 57.89 7.61 52912.65 230.03 p-value = 0.8481
NELLORE INGARCH ELM 21.13 4.6 65.42 8.09 p-value = 0.5914
INGARCH 2718.35 52.14 580.72 24.1 p-value = 2.2e-16
ANN 116.13 10.78 714.65 26.73 p-value = 0.09557
SVR 62.59 7.91 947.7 30.78 p-value = 2.2e-16
RABI ELM 2614.09 51.13 1267.09 35.6 p-value = 2.2e-16
INGARCH-ANN 245.93 15.68 807.5 28.42 p-value = 0.2165
INGARCH-SVR 0.79 0.89 0.25 0.5 p-value = 0.9744
INGARCH ELM 0.15 0.38 0.09 0.31 p-value = 0.7076
INGARCH 185.86 13.63 89.87 9.48 p-value = 2.2e-16
ANN 73.6 8.58 199.22 14.11 p-value = 0.2917
SVR 0.02 0.14 743.49 27.27 p-value = 0.1899
RAGOLU KHARIF ELM 128.87 11.35 44.75 6.69 p-value = 1.414e-13
INGARCH-ANN 99 9.95 38.42 6.2 p-value = 0.6544
INGARCH-SVR 0.01 0.11 0.01 0.09 p-value = 0.08588
INGARCH ELM (1] 0.02 0 0.02 p-value = 0.8702

70. © 2026 AATCC Review. All Rights Reserved.



P. Lavanya Kumari et al, / AATCC Review (2026)

INGARCH
ANN
SVR
ELM
INGARCH-ANN
INGARCH-SVR
INGARCH ELM

RAGOLU RABI

The results of modeling and predicting yellow
stem borer (YSB) populations at different study
locations were evaluated using MSE and RMSE for
both training and testing datasets. Among the
various models that were tested in INGARCH-
ELM consistently demonstrated superior
predictive performance across most of the
locations and seasons, achieving the lowest error
values and effectively capturing the complex
temporal dependencies of YSB population
dynamics. In Bapatla (Kharif ) the SVR model
outperformed the other models as it has the
lowest performance metrics along with no
autocorrelation among the residuals. Whereas, in
Nandyal (Kharif), Nellore (Kharif, Rabi), and
Ragolu (Kharif) INGARCH-ELM outperformed
the other models with no significant
autocorrelation among the residuals and lowest
RMSE and MSE values. In Ragolu (Rabi) among
the models with no autocorrelation in the
residuals, ANN performed better with the lowest
error metrics(RMSE, MSE). In Maruteru (Kharif)
among the models with no autocorrelation in the
residuals SVR model had the lowest performance
metrics. In contrast, for Maruteru (Rabi)
INGARCH-SVR was the best model having the
lowest error metrics and no autocorrelation
among the residuals. Overall, these findings
suggest that hybrid approaches integrating
INGARCH with machine learning techniques,
particularly extreme learning machines (ELM),
significantly enhance predictive accuracy,
supporting more effective pest management
strategies and data-driven decision-making in
integrated pest control programs. Further, only
those models with no autocorrelation among
residuals and lowest performance metrics were
considered as the best model which are
mentionedintable 5.

660.27
195.92
216.23
586.3
252.28
0.04
0

Table 5: Best models along with Box Pierce Testvalues on their residuals

p-value

Box-Pierce test for autocorrelation on
residuals
Chi-square

Testing data set
MSE

RMSE

MSE
2113

Training data set

RMSE

Best model

Testing data
set

Training data
set

Total no of
observations

Frequency of SMW

SMW

Years of data
availability

Season

Research
Station

25.7
13.99
14.7

24.2

1

15.88

0.2

0.05

1422.27
21.81
103.53
1406.72
224.46
0.03
0

8.09
0.31
0.02
4.67
1188.62
8.95
124.21

0.15
0
195.92

4.6
0.38
0.02

13.99
12.78
18.31

NBINGARCH-ELM
NBINGARCH-ELM
NBINGARCH-ELM

276:285
246:255

0.232639
0.211806
0.233333
0.233333
0.4625
0.326389
0.2875
0.190972

285
255
286
286
616
420

277:286
277:286

607:616

21.81
1412822

ANN

163.42

SVR
NBINGARCH-SVR

uuuuu

2023
2023

2023

2023

2023

80.08
15427.08

335.39

411:420
355:364
216:225

20
28
25

1to 20
32to7
33t05

2023

1.54

1.24
0.01

SVR
NBINGARCH-ELM

364

225

2023

1.432

0.01

2022

2009
2009
2011

Nellore(NLR)

2011

Ragolu(RGL)

2002
2003
2011

Khar

Rabi

Maruteru(MTU)

if

Khar

Bapatla(BPT)
Nandyal(NDL)

2014

Kharif

37.71 p-value = 2.2e-16
4.67 p-value = 0.8302
10.18 p-value = 2.692e-08
37.51 p-value = 2.2e-16
14.98 p-value = 0.8827
0.18 p-value = 0.8827
0.07 p-value = 0.03749

The results presented in table 5 highlight the
best-performing models for forecasting Yellow
Stem Borer (YSB) populations at various research
stations and seasons, along with their
corresponding error metrics and residual
autocorrelation tests. The study considered
multiple years of data from different locations,
including Nellore (NLR), Ragolu (RGL), Maruteru
(MTU), Bapatla (BPT), and Nandyal (NDL) for
both Kharif and Rabi seasons. In Nellore (NLR),
the NBINGARCH-ELM model was the most
effective in both seasons. For Kharif, it achieved a
training RMSE of 4.60 and MSE of 21.13, while in
testing, the RMSE and MSE increased to 8.09 and
65.42, respectively, indicating a moderate rise in
error. In Rabi, the model performed exceptionally
well, with a training RMSE of 0.38 and MSE of
0.15, and a testing RMSE of 0.31 and MSE of 0.09,
demonstrating strong predictive accuracy. The
Box-Pierce test for residual autocorrelation
confirmed no significant autocorrelation in both
seasons, as indicated by p-values of 0.60 (Kharif)
and 0.71 (Rabi).

For Ragolu (RGL), the NBINGARCH-ELM model,
ANN emerged as the best model in kharif and rabi
season respectively. In Kharif, it achieved an
RMSE of 0.02 and MSE of 0.00 for training, and an
RMSE of 0.02 and MSE of 0.00 for testing,
reflecting minimal error. In Rabi, the model's
performance was slightly lower but still effective,
with a training RMSE of 13.99 and MSE of 195.92,
and a testing RMSE of 4.67 and MSE of 21.81. The
Box-Pierce test results suggested no significant
autocorrelation in the Kharif season (p = 0.870),
butmild autocorrelation was detected in Rabi (p =
0.83). At Maruteru (MTU), the results varied by
season. In Kharif, the SVR model was the best
performer intraining, achievingan RMSE 0f12.78
and MSE of 163.42. However, in testing, the RMSE
drastically increased to 1188.62 and MSE to
1,412,822, suggesting potential overfitting. In
Rabi, the NBINGARCH-SVR model was the best
model, achieving a training RMSE of 18.31 and
MSE of 335.39, and a testing RMSE of 8.95and
MSE of 80.08. The Box-Pierce test indicated no
residual autocorrelation in Rabi (p = 0.057),
whereas in Kharif (p = 0.089), the residuals were
mostly uncorrelated. For Bapatla (BPT), the SVR
model was the best-performing model in Kharif,
with a training RMSE of 1.24 and MSE of 1.54, and
a testing RMSE of 124.21 and MSE of 15427.08.
However, the Box-Pierce test revealed no
significant autocorrelation in residuals (p =
0.344).
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At Nandyal (NDL), the NBINGARCH-ELM model achieved the best results in Kharif, with a training RMSE of 0.01 and MSE 0f 0.00, and
atesting RMSE of 0.01 and MSE of 0.00. The Box-Pierce test showed no significantautocorrelation (p = 0.232), confirming the model's
reliability in this location. Overall, the findings indicate that the NBINGARCH-ELM model consistently outperformed other models,
particularly in Nellore, Ragolu, Bapatla, and Nandyal, while the NBINGARCH-SVR model performed well in Maruteru (Rabi season).
The SVR model, despite its low training error in Maruteru (Kharif season), exhibited a large gap between training and testing errors,
suggesting overfitting. The Box-Pierce test results across locations, showed no significant autocorrelation. Ultimately, these findings
reinforce that hybrid NBINGARCH-based models effectively capture YSB population dynamics, making them valuable tools for pest
management and forecasting in different agricultural environments
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Conclusion

The study successfully integrated statistical and machine
learning approaches to forecast Yellow Stem Borer (YSB)
populations across various rice-growing locations in Andhra
Pradesh. The results demonstrated that hybrid models
(NBINGARCH-ELM, NBINGARCH-SVR), particularly
NBINGARCH-ELM, consistently outperformed standalone
models in terms of predictive accuracy. The analysis highlighted
the strong influence of climatic factors such as temperature,
humidity, and rainfall on YSB dynamics, with notable variations
across seasons and locations. While the SVR model showed
promising performance in specific cases, it also exhibited signs
of overfitting, reinforcing the need for hybrid approaches. The
Box-Pierce test confirmed no residual autocorrelation,
validating the reliability of the selected models. These findings
emphasize the potential of hybrid statistical-ML models in
improving pest forecasting, which can aid in timely and effective
pestmanagement strategies.

Future Scope:

Future research can enhance model precision by integrating
additional environmental variables such as wind speed and soil
conditions, as well as agronomic factors like sowing dates, crop
stages, and varietal resistance. Further, the development of real-
time forecasting systems and mobile-based advisory tools can
bridge the gap between model predictions and farmer-level
decision-making.
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